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1. Introduction

The existence of Dark Matter seems to require physics beyond the Standard Model. If

this physics arises from a string/M theory vacuum, one is faced with various problems

associated with the moduli fields, which are gauge-singlet scalar fields that arise when

compactifying string/M theory to four dimensions. In particular, moduli fields can give

rise to disastrous cosmological effects.

For example, the moduli have to be stabilized, or made massive, in accord with cos-

mological observations. Even if these moduli are made massive, there could be a large

amount of energy stored in them leading to the formation of scalar condensates. In most

cases, this condensate will scale like ordinary matter and will quickly come to dominate

the energy density. The moduli are unstable to decays to photons, and when this occurs,

the resulting entropy can often spoil the successes of big-bang nucleosynthesis (BBN). This

is the cosmological moduli problem [1 – 5]. In supersymmetric extensions of the standard

model, the overproduction of gravitinos can cause similar problems and have been a source

of much investigation [6 – 19].

In addition, the “standard” picture in which Dark Matter (DM) particles are produced

during a phase of thermal equilibrium can be significantly altered in the presence of moduli.

The moduli, which scale like non-relativistic matter, typically dominate the energy density

of the Universe making it matter dominated. Therefore, the dominant mechanism for

production of DM particles is non-thermal production via the direct decay of moduli.1

However, this can lead to further problems since it is easy to produce too much dark

matter compared with what we observe today.

In recent years there has been considerable progress in our understanding of mod-

uli dynamics and their potential in different frameworks which arise in various limits of

string/M theory. The most popular examples include the KKLT and Large Volume frame-

works in Type IIB string theory [23 – 25], where all moduli are stabilized by a combination

of fluxes and quantum corrections. These frameworks are also attractive in the sense that

they provide a mechanism for supersymmetry breaking at low scales (∼ TeV), thus ac-

commodating the hierarchy between the Electroweak and Planck scales (see [26 – 28] for

reviews). Since one can concretely study the couplings between moduli and matter fields,

1For other phenomenologically based approaches to non-thermal dark matter and the related issue of

baryon asymmetry in the presence of scalar decay see [20, 22, 21].
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we have an opportunity to address many issues in particle physics and cosmology from

an underlying microscopic viewpoint. The cosmological moduli/gravitino problems and

adequate generation of dark matter within the Type IIB frameworks has met with some

mixed success in a recent paper [29].

In this paper we will study a different framework, in which we will also address the

Dark Matter and moduli/gravitino problems. This is the low energy limit of M theory

vacua in which the extra dimensions form a manifold of G2 holonomy. Although the study

of such vacua has proven to be technically challenging, much progress has been made

towards understanding the effective four dimensional physics emerging from them [31 – 34].

This includes many phenomenological implications of these vacua, in particular relating

to issues such as constructing a realistic visible sector with chiral matter and non-abelian

gauge bosons, supersymmetry breaking, moduli stabilization in a dS vacuum as well as

explaining the Hierarchy between the Electroweak and Planck scales, as exemplified in a

number of works [30, 35 – 39].

We will show that the moduli, gravitino and dark matter problems are all naturally

solved within this framework. Because of the presence of moduli, the Universe is matter-

dominated from the end of inflation to the beginning of BBN. The LSPs are mostly pro-

duced non-thermally via moduli decays. The final result for the relic density only depends

on the masses and couplings of the lightest of the moduli (which decay last) and the mass of

the LSP. This is related to the fact that the LSP is a Wino in the G2-MSSM and that there

is a fairly model independent critical LSP density at freeze out. For natural/reasonable

choices of microscopic parameters defining the G2 framework, one finds that it is possible

to obtain a relic density of the right order of magnitude (up to factors of O(1)). With

a more sophisticated understanding of the microscopic theory, one might obtain a more

precise result. The qualitative features which are crucial in solving the above problems

may also be present in other realistic string/M theory frameworks.

Moduli which decay into Wino LSPs have been considered previously in the context of

Anomaly Mediated Supersymmetry Breaking Models (AMSB) by Moroi and Randall [40].

The moduli and gaugino masses they consider are qualitatively similar to those of the

G2-MSSM. There are some important differences however. In particular, the MSSM scalar

masses in the [40] are much lower than the G2-MSSM, leading to much fewer LSPs produced

per modulus decay compared to the G2 models. Furthermore, unlike in AMSB, in the G2

case one is able to calculate all the moduli masses and couplings explicitly which leads to

a more detailed understanding. In essence, though, many of the important ideas in our

work are already present in [40]. The G2-MSSM models can be thought of as a concrete

microscopic realization of the relevant qualitative features of the AMSB models.

Interestingly, our actual result for the relic density (equation 6.17) is a few times larger

than the WMAP value if we use central values for the microscopic constants, which should

probably be regarded as a success. It is also worth remarking that, contrary to common

views, it is not at all possible to get any value one wants — we can barely accommodate

the actual observed value in the G2 framework.

The paper is organized as follows. In section 2 we briefly summarize early universe

cosmology in the presence of moduli, and address many of the issues associated with their
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stabilization and decay. In section 3 we give a non-technical overview of the main results.

This is largely because much of this paper involves technical calculations. In section 4

we present a brief review of the G2-MSSM, a model which arises after considering moduli

stabilization within the framework of M theory compactifications. A basic discussion of

decay rates and branching ratios for the moduli and gravitinos in this model follows, with a

detailed calculation left for appendix B. Then in section 5, we consider again the cosmology

of moduli presented in section 2) for the case of the G2-MSSM. In section 6, after a review

of dark matter production in both the thermal and non-thermal cases, we consider the

dark matter abundance arising from the non-thermal decay of the G2-MSSM moduli. This

section is a more technical overview of the salient features of dark matter production,

leaving an even more detailed treatment for appendix A. In this section we present our

main result, which is that the G2-MSSM naturally predicts a relic density of Wino-like

neutralinos of about the right magnitude in agreement with observation. This is followed

by a detailed discussion of the results obtained and how it depends on the qualitative (and

quantitative) features of the underlying physics. We then conclude with considerations for

the future.

2. Early universe cosmology in the presence of moduli

Before considering the particular case of moduli in the G2-MSSM, we first briefly review the

early universe evolution of moduli and the associated cosmological issues that can result.

This section will also serve to set our conventions.

Currently, the only convincing model leading to a smooth, large, and nearly isotropic

Universe as well as providing a mechanism for generating density perturbations for struc-

ture formation is cosmological inflation. At present we have very little understanding

of how the “inflationary era” might arise within the M theory framework. In what fol-

lows,therefore, we will assume that adequate inflation and (p)reheating have taken place

and focus on the post-reheating epoch. We will also conservatively take the inflationary

reheat temperature to be near the unification scale 1014 − 1015 GeV, so that possibilities

for high-scale baryogenesis exist. We will comment more on this issue at the end.

During inflation, the moduli fields are generically displaced from their minima by an

amount of O(mp) [41]. This can be seen by looking at the following generic potential

experienced by the moduli:

V (ψ) ∼ 1

2
m2

soft(ψ − ψ0)
2 −H2

inf(ψ − ψ0)
2 +

1

m2n
p

(ψ − ψ0)
4+2n (2.1)

where ψ0 is the true vacuum-expectation-value (vev) of the field, i.e. in the present Uni-

verse. Only the first term in (2.1) comes from zero-temperature supersymmetry breaking,

the other two highlight the importance of high-scale corrections and the mass-squared pa-

rameter (∼ −H2
inf) which results from the finite energy density associated with cosmological

inflation [41]. As argued earlier, the potential (2.1) is dominated by the last two terms

during inflation since Hinf ≫ msoft ∼ m3/2. Thus, a minimum of the potential will occur
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near:

〈ψ〉inf ∼ ψ0 +mp

(

Hinf

mp

)1/(n+1)

H ≫ msoft. (2.2)

Here, for simplicity, we have implicitly assumed that the induced mass-squared parameter

for ψ during inflation is negative and of O(H2
inf). This is possible for a non-minimal

coupling between the inflationary fields and the moduli, a generic possibility within string

theory. A large displacement of moduli fields is also possible when the induced mass-

squared parameter during inflation is positive, but much smaller than |H2
inf |. In this case,

large dS fluctuations can drive the moduli fields to large values during inflation. Therefore,

independent of details, the assumption we make is that gauge singlet scalar fields like

moduli (and meson fields in the G2-MSSM) will be displaced from their present minimum

by large values.

After the end of inflation and subsequent cosmological evolution, when H . m3/2, the

soft mass term in the potential will dominate and we have:

〈ψ〉present ∼ ψ0 H . msoft. (2.3)

ψ0 is also typically of order mp. In section 4, we will present the soft masses and decay

rates for the moduli arising from soft SUSY breaking in the G2-MSSM low-energy effective

theory relevant in the present Universe. Thus, we see that by considering moduli in the

early universe with high-scale inflation, it is a rather generic consequence to expect moduli

to be displaced from their low-energy (present) minimum by an amount:

|∆ψ| ≡ |〈ψ〉inf − 〈ψ〉present| ≈ mp

(

Hinf

mp

)1/(n+1)

. mp (2.4)

2.1 Addressing the “Overshoot problem”

The evolution of moduli after the end of inflation is governed by the following equation:

ψ̈ + (3H + Γψ)ψ̇ +
∂V

∂ψ
= 0. (2.5)

where the modulus decay rate ψ → XX is given by:

Γψ = Dψ

m3
ψ

m2
p

, (2.6)

which reflects the fact that the modulus is gravitationally coupled (Γψ ∼ GN ∼ m−2
p ) and

Dψ is a model dependent constant that is typically order unity. After the end of inflation,

the Universe is dominated by coherent oscillations of the inflaton field and H ∼ 2
3t . After

the decay of the inflaton and subsequent reheating at temperature Tr, the Universe is

radiation dominated and H ∼ 1
2t . In both these phases, the evolution of the moduli can

be written as:

ψ̈ + O(1)
1

t
ψ̇ +

∂V

∂ψ
= 0. (2.7)
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where we have neglected Γψ as it is planck suppressed. The minimum of the potential now

is time-dependent due to the time dependence of the Hubble parameter. The evolution

of the moduli in the presence of matter and/or radiation as in the case above, has been

studied in [42 – 51]. In this case, as the modulus begins to roll down the potential, it was

shown in [42, 45 – 47]) that the presence of matter/radiation has a slowing effect on the

evolution of the field. This can naturally allow for the relaxation of moduli into coherent

oscillations about the time-dependent minimum.2 This ‘environmental relaxation’ can then

slowly guide the modulus to the time-dependent minimum.

Another possibility arises if the minimum of the potential is located at a point of

enhanced symmetry where additional light degrees of freedom become important. This

naturally arises in SUGRA theories that are derived from string theories, where an under-

lying knowledge of the UV physics is known [52, 49, 50, 53]. If the modulus initially has

a large kinetic energy, as it evolves close to the point of enhanced symmetry, new light

degrees of freedom will be produced and then backreact to pull the modulus back to the

special point of enhanced symmetry. This simple example of ‘moduli trapping’ is present

in a large number of examples in string theory with points of enhanced symmetry [48 – 51].

The above effects lead to a natural solution of the so-called ‘overshoot problem’ [54]

(see also [55]), as argued below. As the universe expands and cools, the Hubble parameter

(H) decreases until it eventually drops below the mass of the modulus mψ (∼ m3/2). Thus,

from (2.1), we see that the first term in the potential now becomes of the same order as the

other two terms and can no longer be neglected. At this time the modulus field becomes

under-damped and begins to oscillate freely about the true minimum ψ0 with amplitude

fψ ∼ (mn
p mψ)1/(n+1). As an example, for n = 1, fψ is (mpmψ)1/2 leading to a potential

value V ∼ m2
ψf

2
ψ ∼ m3

ψmp which is much smaller than the overall height of the potential

barrier at this time (∼ m2
ψm

2
p, as in any soft susy breaking potential). Thus, there is no

overshoot problem.

The modulus will now quickly settle into coherent oscillations at a time roughly given

by tosc = 2H−1 ∼ 2m−1
ψ . After coherence is achieved, the scalar condensate will then evolve

as pressure-less matter,3 i.e. ρm(tosc) = 1
2m

2
ψf

2
ψ. Because the condensate scales as pressure-

less matter ρm ∼ 1/a3, its contribution relative to the background radiation ρr ∼ 1/a4 will

grow with the cosmological expansion as a(t) ∼ 1/T . Thus, if enough energy is stored

initially in the scalar condensate it will quickly grow to dominate the total energy density.

3. Overview of results

This section reviews the main results of the paper without technical details.

As explained above, the moduli start oscillating when the Hubble parameter drops

below their respective masses. Then they eventually dominate the energy density of the

Universe before decaying. Within the context of G2-MSSM models, the relevant field

content is that of the MSSM and N +1 real scalars. N of these are the moduli, XK , of the

2We thank Joe Conlon and Nemanja Kaloper for discussions on this approach.
3If there are additional terms that contribute to the potential (besides the soft mass), then a coherently

oscillating scalar does not necessarily scale as pressure-less matter.
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G2-manifold and the remaining one is a scalar field, φ, called the meson field, which arises

in the hidden sector dominating the supersymmetry breaking. A reasonable choice for N

would be O(50) - O(100).

The masses are roughly as follows. The lightest particles beyond the Standard Model

particles are the gauginos. In terms of the gravitino mass, m3/2, their masses are of order

κm3/2, suppressed by a small number κ. κ is determined by a combination of tree level

and one-loop contributions which turn out to be comparable. The tree-level contribution

is suppressed essentially because φ dominates the supersymmetry breaking, and to leading

order, the gauge couplings are independent of φ. The precise spectrum of gaugino masses

is qualitatively similar, but numerically different, to AMSB models. The LSP is a Wino

in the G2-MSSM, similar to AMSB models. The current experimental limits on gauginos

require that the gravitino mass is at least 10 TeV or so. In the G2 framework, gravitinos

naturally come out to be of O(10−100) TeV [38]. 50 TeV is a typical mass that we consider

in this paper. The MSSM sfermions and higgsinos have masses of order m3/2, except the

right handed stop which is a factor of few lighter due to RG running. Of the N moduli,

one, XN is much heavier than the rest, Xi. The heavy modulus mass is about 600 m3/2,

while the (N −1) light moduli are essentially degenerate with masses ∼ 2m3/2. Finally the

meson mass is also about 2m3/2. The decays of the moduli and meson into gravitinos will

therefore be dominated by the heavy modulus XN .

The decays can be parameterized by the decay width as,

ΓX = DX
m3
X

m2
p

(3.1)

reflecting the fact that the decays are gravitationally suppressed. DX is a constant which

we calculate to be order one for the moduli but order 700 for φ. So, the light moduli

have decay widths of order 10−13eV, corresponding to a lifetime of order 10−3 s. The

heavier scalars have shorter lifetimes, 10−5 s for φ and 10−10 for XN , see tables 1 and

2. So, as the Universe cools further and H reaches a value of order ΓXN
, the heavy

modulus decays. When this happens, the Universe is reheated to a temperature, roughly

of order Tr ∼ (Γ2
XN

m2
p)

1/4 ∼ 40 GeV. The entropy is increased in this phase, by a factor of

about 1010. This greatly dilutes the thermal abundance of gravitinos and MSSM particles

produced during reheating (by the inflaton). The abundance of the light moduli and

meson are also diluted. Then, when H reaches order Γφ the meson decays. This reheats

the Universe to a temperature Tr ∼ 100 MeV and increases the entropy by a factor of order

100. Finally, as the Universe cools again and reaches a temperature of about 10−13 eV the

light moduli decay. They reheat the Universe to a temperature of about 30 MeV and a

dilution factor of about 100 again. After this, all the moduli have decayed and the energy

density is dominated by the decay of the light moduli. Since the final reheat temperature

is well above that of nucleosynthesis, BBN can occur in the standard way.

Furthermore, since the entropy increases by a total factor of about 1014, the gravtino

density produced by moduli and meson decays is sufficiently diluted to an extent that it

avoids existing bounds from BBN from gravitino decays.
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Since the energy density is dominated by the decaying light moduli, the relic density

of Wino LSP’s is dominated by this final stage of decay. The initial density of LSP’s

at the time of production is such that the expansion rate is not large enough to prevent

self-interactions of LSP’s. This is because

ninitial
LSP >

3H

〈σv〉

∣

∣

∣

∣

Tr

(3.2)

where the right side is to be evaluated at the final reheating temperature and σv is the

typical Wino annihilation cross-section ∼ 10−7GeV−2. Therefore, the Wino’s will anni-

hilate until they reach the density given on the R.H.S., which is roughly 1012 eV3 - an

energy density of 1023 eV4. Here we have assumed, as is reasonable, that since there is a

lot of radiation produced at the time of decay, the LSPs quickly become non-relativistic

by scattering with this ‘background’. Since the entropy at the time of the last reheating

s ∼ 10T 3 ∼ 1023 eV3, the ratio of the energy density to entropy, is around 1 eV. This

should be compared to the observed value of this ratio today, which is 3.6 h2 eV, where the

Hubble parameter today is about 0.71.

Therefore, we see that the Wino LSP relic density is very reasonable in these models.

The rest of this paper is devoted to a much more precise, detailed version of this calculation.

3.1 Scalar decay and reheating temperatures

Here we collect some more precise formulae for the decay and reheat temperatures as a

function of the moduli/meson masses.

The temperature at the time of decay can be found using

3H2
d =

mψYψ
m2
p

sd =
mψYψ
m2
p

(

2π2

45

)

g∗s(Td) T
3
d , (3.3)

−→ Td =

(

30

π2

)1/3
(

Γ2
ψm

2
p

mψYψg∗s(Td)

)1/3

, (3.4)

where Yψ = nψ/s is the comoving number density and

s =
ρ+ p

T
=

2π2

45
g∗sT

3, (3.5)

is the entropy density with g∗s the number of relativistic degrees for freedom.4 Parameter-

izing the decay rate as above, i.e. Γψ = Dψm
3
ψ/m

2
p we find

Td =

(

30

π2

)1/3

g
−1/3
∗s (Td)

(

D2
ψm

5
ψ

Yψm2
p

)1/3

(3.6)

For later use we also note that if more than one modulus dominates at the time of decay

then the temperature at the time of decay becomes

Td =

(

30

π2

)1/3

g
−1/3
∗s (Td)

(

D2
ψm

6
ψ

m2
p

∑

imiYi

)1/3

(3.7)

4We will take g∗s = g∗, which is true if all particles track the photon temperature. This is a good

approximation for most of the history of the universe (prior to decoupling) [56].
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where the sum is over all moduli (including the one that decays). When the modulus

decays, the relativistic decay products will reheat the universe to a temperature,

3H2 =
4Γ2

ψ

3
= m−2

p

(

π2

30

)

g∗(Tr) T
4
r , (3.8)

−→ Tr =

(

40

π2

)1/4

g
−1/4
∗ (Tr)

√

Γψmp, (3.9)

or

Tr =

(

40

π2

)1/4

g
−1/4
∗ (Tr)

(

Dψm
3
ψ

mp

)1/2

. (3.10)

Instead, if more than one modulus contributes to the energy density before decay the reheat

temperature becomes

Tr =

(

40

π2

)1/4

g
−1/4
∗ (Tr)

(

mψYψ
∑

imiYi

)1/4
(

Dψm
3
ψ

mp

)1/2

, (3.11)

where the sum is over all moduli (including the one that decays) and we note that this

could lead to a subdominant radiation density compared to that of the remaining moduli.

The entropy production is characterized by (assuming that ∆ ≫ 1)

∆ =

(

Sr
Sd

)

=
g∗s(Tr)a

3(tr)T
3
r

g∗s(Td)a3(td)T
3
d

, (3.12)

where Td and Tr are the decay and reheat temperatures, respectively. Making use

of (3.10), (3.12), and (3.6) we find

∆ =
2

15

(

250π2
)1/4

(

g∗s(Tr)

g∗s(Td)

)

(

g∗s(Td)

g
3/4
∗ (Tr)

)

mψYψ

(Γφmp)
1/2

,

=
2

15

(

250π2
)1/4

g
1/4
∗ (Tr)

(

mp

Dψmψ

)1/2

Yψ, . (3.13)

For the case that more than one modulus dominates the energy density before ψ decays,

we have instead

∆ =
2

15

(

250π2
)1/4

g
1/4
∗ (Tr)

(

mp

Dψmψ

)1/2 [∑

imiYi
mψYψ

]1/4

Yψ, (3.14)

where the sum runs over all moduli that contribute to the energy density (including the

decaying modulus ψ).

3.1.1 Moduli decay and BBN

From (3.14), we see that the decay of moduli can produce a substantial amount of entropy.

Therefore, if any moduli present do not decay before the onset of BBN the resulting entropy

production when decay occurs could result in devastating phenomenological consequences.

However, another possibility is provided if the late-time decay of the moduli reheat the

universe to temperatures greater than a few MeV. Such reheating will then allow BBN to

proceed as usual. Requiring that the modulus decay exceeds this temperature one finds

from (3.10) that mψ & 10 TeV.
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4. Summary of results for the G2-MSSM

In this section, we give a brief summary of the results obtained in [37 – 39] for the G2-

MSSM. Readers interested in more details should consult the references above. M theory

compactifications on singular G2 manifolds are interesting in the sense that they give rise

to N = 1 supersymmetry in four dimensions with non-Abelian gauge groups and chiral

fermions. The non-Abelian gauge fields are localized along three-dimensional submanifolds

of the seven extra dimensions whereas chiral fermions are supported at points at which there

is a conical singularity. In order to study phenomenology concretely one has to address the

issues of moduli stabilization, supersymmetry breaking and generation of the Hierarchy be-

tween the Electroweak and Planck scales. These issues can be fairly successfully addressed

within the above framework.

In [37 – 39], it was shown that all moduli can be stabilized generically in a large class

of M theory compactifications by non-perturbative effects. This happens in the zero-flux

sector, our primary interest, when these compactifications support (at least two) non-

abelian asymptotically free gauge groups. Strong gauge dynamics in these non-abelian

(hidden sector) gauge groups gives rise to the non-perturbative effects which generate a

moduli potential. When at least one of the hidden sectors also contains charged matter,

under certain assumptions defining the above framework, supersymmetry is spontaneously

broken in a metastable de Sitter vacuum which is tuned to the observed value. In the

minimal framework, the hidden sector, including its moduli and hidden sector matter, is

described by N = 1 supergravity with the following Kähler potential K, superpotential W

and gauge kinetic function f at the compactification scale (∼Munif):

K/m2
p = −3 ln(4π1/3V7) + φ̄φ, V7 =

N
∏

i=1

sai
i

W = m3
p

(

C1 P φ
−(2/P ) eib1f1 + C2Qe

ib2f2
)

; b1 =
2π

P
, b2 =

2π

Q

f1 = f2 ≡ fhid =

N
∑

i=1

Ni zi; zi = ti + isi. (4.1)

Here V7 ≡ Vol(X)
l7
11

is the volume of the G2 manifold X in units of the eleven-dimensional

Planck length l11, and is a homogenous function of the si of degree 7/3. A simple and

reasonable ansatz therefore is V7 =
∏N
i=1 s

ai
i with ai positive rational numbers subject

to the constraint
∑N

i=1 ai = 7
3 . φ ≡ det(QQ̃)1/2 = (2QQ̃)1/2 is the effective meson field

(for one pair of massless quarks) and P and Q are proportional to one loop beta function

coefficients of the two gauge groups which are completely determined by the gauge group

and matter representations. The normalization constants C1 and C2 are calculable, given

a particular G2-manifold. f1,2 are the (tree-level) gauge kinetic functions of the two hidden

sectors which have been taken to be equal for simplicity, (which is the case when the

corresponding two 3-cycles are in the same homology class). si are the N geometric moduli

of the G2 manifold while ti are axionic5 scalars. The integers Ni are determined from the

5These essentially decouple from the moduli stabilization analysis. Hence they will not be considered
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topology of the three-dimensional submanifold which supports the hidden sector gauge

groups.

If volume of the submanifold supporting the hidden sector gauge theories (VQ̂) is large,

the potential can be minimized analytically order-by-order in a 1/VQ̂ expansion. Physically,

this expansion can be understood as an expansion in terms of the small gauge coupling of

the hidden sector — (α0)hid, which is self-consistent since the hidden sectors are assumed

to be asymptotically free. The solution corresponding to a metastable minimum with

spontaneously broken supersymmetry is given by

si =
ai
Ni

3

14π

Peff Q

Q− P
+ O(P−1

eff ), (4.2)

|φ|2 = 1 − 2

Q− P
+

√

1 − 2

Q− P
+ O(P−1

eff ), (4.3)

where Peff ≡ P ln(C1/C2). The natural values of P and Q are expected to lie between O(1)

and O(10). It is easy to see that a large Peff corresponds to small α for the hidden sector

(α−1
0 )hid = Im(fhid) ≈

Q

2π(Q− P )
Peff (4.4)

implying that the expansion is effectively in P−1
eff . The φ dependence of the potential at

the minimum is essentially

V0 ∼ m2
3/2M

2
P

[

|φ|4 +

(

4

Q− P
+

14

Peff
− 3

)

|φ|2 +

(

2

Q− P
+

7

Peff

)]

(4.5)

Therefore, the vacuum energy vanishes if the discriminant of the above expression vanishes,

i.e. if

Peff =
28(Q − P )

3(Q− P ) − 8
(4.6)

The above condition is satisfied when the contribution from the F -term of the meson field

(Fφ) to the scalar potential cancels that from the −3m2
3/2 term. In this vacuum, the F -

term of the moduli Fi are much smaller than Fφ. Since phenomenologically interesting

compactifications only arise for Q− P = 3 which corresponds to Peff = 84 from (4.6), we

will restrict our analysis to this particular choice.

4.1 Moduli masses

Since in this paper we are interested in the evolution of the moduli (and meson) fields, it is

important to study their masses in the vacuum described above. The set of gauge-singlet

scalar fields includes N geometric moduli si associated with G2 manifold and a hidden

sector meson field φ. Since these moduli and meson will mix in general, the physical

moduli correspond to mass eigenstates. The mass matrix can be written as:

(

m2
X

)

i j
=
(

(aiaj)
1/2K1 + δijK2

)

m2
3/2 (4.7)

further.
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(

m2
)

i φ
= (ai)

1/2K3 m
2
3/2 (4.8)

(

m2
)

φφ
= K4 m

2
3/2 (4.9)

where K1 to K4 are obtained in [38]:

K1 =
16

9261

(

Q

Q− 3

)2

P 4
eff (4.10)

K2 =
22

3
− 8

9φ2
0

− 2φ2
0 − (1 +

2

3φ2
0

)
36

Peff
(4.11)

K3 =

√

2

3

(

16

1323

)(

Q

Q− 3

)2 P 3
eff

φ0
(4.12)

K4 =
32

567

(

Q

Q− 3

)4 P 4
eff

φ2
0

(4.13)

where φ2
0 ≈ 0.734. The special structure of the mass matrix allows us to find the eigenstates

analytically. There is one heavy eigenstate with mass mXN
= (7K1/3+K2)

1/2m3/2, (N−1)

degenerate light eigenstates with mass mXj = (K2)
1/2m3/2 and an eigenstate with mass

mφ = (K4 − K2

3

K1
)1/2m3/2. These mass eigenstates of the moduli fields are given by:

Xj =

√

aj+1

(
∑j

k=1 ak)(
∑j+1

k=1 ak)

(

j
∑

k=1

√
ak δs

′
k −

∑j
k=1 ak√
aj+1

δs′j+1

)

; j = 1, 2 · · ·N − 1

XN =

√

3

7

N
∑

k=1

√
ak δs

′
k (4.14)

where δs′j =

√

3aj

2s2j
δsj are the canonically normalized moduli fields. The normalized moduli

fields can be related to the eigenstates by δs′i = UijXj , in which Uij can be constructed

using the eigenstates listed above. It is easy to show that ( ~Xj)i = Uij for the eigenvector
~Xj . In addition, there is another eigenstate Xφ corresponding to the meson field. Actually,

the heavy eigenstate XN and Xφ mix with each other. This mixing hardly changes the

components of the eigenstate XN and Xφ since mXN
≫ mφ. However, the mass of the

eigenstate Xφ is affected by the mixing. The masses mXN
and mφ only have a mild

dependence on Q (for Peff = 84, Q− P = 3), and do not depend on the number of moduli

N at all. The mass of the light moduli mXj does not even depend on Q. Taking the

expression for K2, one immediately finds that mXj ≈ 1.96m3/2, j = 1, . . . , N − 1. This

result is very important since light moduli are then not allowed to decay into gravitinos,

essentially eliminating the moduli induced gravitino problem. Choosing a reasonable value

of Q to be of O(10), one finds that mφ is roughly around 2m3/2 while mXN
is roughly

around 600m3/2. Changing values of Q by O(1) hardly changes the moduli masses mXN

and mφ. Therefore, the above typical values will be used henceforth in our analysis. To

summarize, the meson and moduli masses in the G2 -MSSM can be robustly determined

in terms of m3/2.
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4.2 Couplings and decay widths

Understanding the evolution of the moduli also requires a knowledge of the couplings of the

moduli (meson) fields to the visible sector gauge and matter fields. Since all the moduli are

stabilized explicitly in terms of the microscopic constants of the framework, all couplings

of the moduli and meson fields to the MSSM matter and gauge fields can in principle be

explicitly computed. Here we focus on the moduli couplings to MSSM matter and gauge

fields. A different visible sector, as might arise from an explicit construction, will give

rise to different couplings of the moduli fields in general, although with roughly the same

moduli masses.

Here we will give a brief account of the important couplings of the moduli meson to

visible gauge and matter fields and set the notation. Details are provided in appendix B.

The most important couplings of the moduli and meson fields involve two-body decays of

the moduli and meson to gauge bosons, gauginos, squarks and slepton, quarks and leptons,

higgses and higgsinos. The three-body decays are significantly more suppressed and will

not be considered.

Let us start with the decay to gauge bosons and gauginos. The relevant part of the

Lagrangian is given by:

Lgauge boson, gaugino = gXkggXk F̂
a
µν F̂

a,µν + gXk g̃g̃Xk λ̂
aλ̂a +

g ˆδφ0 g̃g̃
ˆδφ0 λ̂

aλ̂a; k = 1 · · ·N ; a = 1, 2, 3 (4.15)

Here, Xk, ˆδφ0, F̂
a
µν and λ̂a are the normalized moduli, meson, gauge field strength and

gaugino fields respectively. The expression for the couplings will be provided in appendix B.

It is important to note that the meson field does not couple to gauge bosons since the gauge

kinetic function fsm does not depend on φ0. The normalized moduli eigenstates Xk have

already been discussed. The others can be written as:

δ̂φ0 =
δφ0√

2
; F̂ aµν =

F aµν
√

〈Im(fsm)〉
; λ̂a =

λa
√

〈Im(fsm)〉
(4.16)

where fsm is the gauge kinetic function for the visible SM gauge group. In the rest of

the paper, we will neglect the hats for these normalized fields and mp in the couplings for

convenience.

The coupling of the moduli and meson fields to the MSSM non-higgs scalars (ie

sfermions) turn out to be important, as will be seen later. Since the Standard model

fermion masses (including that of the top) are much smaller than that of the moduli, the

decay of the moduli and meson to these fermions will not be considered. The coupling to

the MSSM sfermions can be written as:

Lnon-higgs scalars = (g′
Xf̃f̃

)i,αβ

[

∂µ(Xi f̃
α∗)∂µf̃α

]

− gα
Xf̃f̃

Xif̃
∗ᾱf̃α

+(g′
δ̂φ0f̃ f̃

)i,αβ

[

∂µ(δφ0 f̃
α∗)∂µf̃α

]

− gα
δφ0 f̃ f̃

δ̂φ0f̃
∗ᾱf̃α (4.17)

where f̃α are the canonically normalized scalar components of the visible chiral fields Cα,

i.e. f̃α = Cα√
K̃α

. The couplings to the higgs and higgsinos are different due to the presence of

– 13 –



J
H
E
P
0
6
(
2
0
0
8
)
0
6
4

the higgs bilinear Z HuHd+h.c in the Kähler potential [39], which gives rise to contributions

to the µ and Bµ parameters. In addition to the couplings similar as those in eq. (4.17),

there are additional couplings for scalar higgses, which can be schematically written as:

Lhiggs ⊃ gXHdHu XjHdHu + g′XHdHu
∂µXj∂

µ(HdHu) + c.c

+gδφ0HdHu δφ0HdHu + g′δφ0HdHu
∂µδφ0∂

µ(HdHu) + c.c (4.18)

As explained in [39], all higgs scalars except the SM-like higgs and all higgsinos are heavier

than the gravitino, implying that the moduli and meson fields can only decay in this sector

to the light SM-like higgs (h). The coupling to the SM-like higgs can be determined from

the above coupling 4.18 as explained in appendix B.

Finally, the moduli and meson fields can also decay directly to the gravitino. In fact,

it turns out that the (non-thermal) production of gravitinos from direct decays dominates

the thermal production of gravitinos in the early plasma. Therefore, it is important to

consider the moduli and meson couplings to the gravitinos. Since the meson and light

moduli are lighter than twice the gravitino mass (as seen from the previous subsection),

only the heavy modulus can decay to the gravitino.

The explicit form of these couplings in terms of the microscopic constants is provided

in appendix B. An important point to note is that these couplings are computed from the

theory at a high scale, presumably the unification scale. However, since the temperature

at which the moduli decay is much smaller than the unification scale, one has to RG evolve

these couplings to scales at which these moduli decay (around their masses). The RG

evolution has also been discussed in appendix B for the important couplings. Once the

effective couplings of these moduli and meson are determined, one can compute the decay

widths, as shown below.

For the G2-MSSM model, we have found that light moduli and meson dominantly

decay to light higgses and squarks, while the heavy modulus dominantly decay to light

higgses only. In appendix B, we have explicitly calculated the decay widths of the moduli

Xk and meson. The widths of moduli can be schematically written as:

Γtotal
Xk

≡
DXk

m3
Xk

m2
p

≈ ΓXk→gg + ΓXk→g̃g̃ + ΓXk→q̃q̃ + ΓXk→hh (4.19)

=
7

72π

(

NG(AXk
1 + AXk

2 ) + AXk
3 + AXk

4

)

(

m3
Xk

m2
p

)

,

where k = 1 · · ·N and NG = 12 is the number of gauge bosons or gauginos. Note that AXk
3

is significant only for k = 1, 2 . . . , N − 1 (see appendix B). For the meson, the width can

be written as:

Γtotal
δ̂φ0

≡
Dφm

3
φ

m2
p

≈ Γδφ0→g̃g̃ + Γδφ0→q̃q̃ + Γδφ0→hh

=
7

72π
(NGAφ0

1 + Aφ0

2 + Aφ0

3 )

(

m3
φ

m2
p

)

. (4.20)
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Modulus Mass (m3/2 = 50 TeV) Oscillation Time (seconds)

XN mXN
= 600 m3/2 tXN

osc = 2 × 10−32

Xφ mφ . 2 m3/2 tφosc = 7 × 10−30

Xi mXi . 2 m3/2 tXi
osc = 7 × 10−30

Table 1: Oscillation times for the G2-MSSM moduli.

4.3 Nature of the LSP

Before moving on to discuss the evolution of moduli in the G2-MSSM, it is important to

comment on the nature of LSP in this framework. As explained in detail in [39], the G2-

MSSM framework gives rise to Wino LSPs for choices of microscopic constants consistent

with precision gauge unification. Therefore, in our analysis we focus on the Wino LSP

case. As we will see, a Wino LSP turns out to be crucial in obtaining our final result.

5. Evolution of moduli in the G2-MSSM

In this section, we apply the general discussion in section 2 to the model of the G2-MSSM

reviewed in the previous section. For clarity we will summarize our main results focusing on

the more salient aspects of the physics, leaving the more technical details of the calculations

to appendix A. We will illustrate our computations with benchmark values, in order to

get concrete numerical results, and comment on the choice of the benchmark values in

section 7.

As discussed in section 2, we assume that cosmological inflation and (p)reheating have

provided adequate initial conditions for the post-inflationary universe.

5.1 Moduli oscillations

As reviewed in the last section, we have a heavy modulus XN , N − 1 light moduli Xi, and

the scalar meson φ. These will begin to oscillate in the radiation dominated universe once

the temperature cools and the expansion rate becomes comparable to their masses.

For a benchmark gravitino mass value6 of 50 TeV, the heavy modulus will begin oscil-

lations first, at around toscXN
≈ 10−32 seconds, corresponding to a temperature of roughly

T = 1012 GeV. Following the heavy modulus, the other moduli will begin coherent oscilla-

tions around 10−30 s corresponding to a temperature of roughly 1011 GeV. These results

are summarized in table 1 below.

Since coherently oscillating moduli (ρm) scale relative to radiation as ρm/ρr ∼ a(t) ∼
1/T , the moduli will quickly come to dominate the energy density of the universe, which

is then matter dominated. Following the beginning of coherent oscillations of the heavy

modulus, until the decay of all the moduli the universe will remain matter dominated.

We will see that this, along with the entropy produced during moduli decays, results in

negligible primordial thermal abundances of (s)particles compared with the non-thermal

6We give detailed numerical values for m3/2 = 50 TeV. It will be clear that values a factor of two or so

smaller or larger than this will not change any conclusions in this and related analyses.
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Modulus Decay constant Decay Time (seconds)

XN DXN
= 2 τXN

= 9 × 10−11

Xφ Dφ = 710 τφ = 6 × 10−6

Xi DXi = 4.00 τXi = 10 × 10−4

Table 2: Decay constants and lifetimes for theG2-MSSM moduli for a set of benchmark microscopic

values

abundances coming from direct decays of the moduli. This will be crucial in addressing

the gravitino problem and establishing a Wino-like LSP as a viable dark matter candidate

through its non-thermal production.

5.2 Moduli decays and gravitino production

As the universe continues to cool the expansion rate will eventually decrease enough so

that the moduli are able to decay. This occurs when H ∼ ΓX , at which time the moduli

will decay reheating the universe and producing substantial entropy. We will parameterize

the decay rates of the G2-MSSM moduli as:

ΓX = DX
m3
X

m2
p

, (5.1)

where ΓX is the decay width for particle X. The decay times will be computed for a

set of benchmark values of DX for the various moduli (meson) which can be obtained by

choosing particular (reasonable) sets of values of the microscopic constants (see appendix B

for details).

5.2.1 Heavy modulus decay and initial thermal abundances

Given the G2-MSSM values in table 2 above, the heavy modulus will be the first to decay at

around 10−11s. This decay will produce a large amount of entropy ∆XN
= Safter/Sbefore ≈

1010 (even though the energy density of the heavy modulus is less than that of the meson

and moduli), reheating the universe to a temperature TXN
r = 41 GeV. The entropy produc-

tion will not only dilute the thermal abundances of all (s)particles, but also all the other

moduli. One particularly important non-relativistic decay product of the heavy modulus

is the gravitino. Gravitinos will be non-thermally produced by the modulus decay with a

branching ratio BXN

3/2 = 0.07%, which yields a comoving abundance Y
(XN )
3/2 = n3/2/s ≈ 10−9.

This can be compared to the thermal abundance of gravitinos, which before modulus de-

cay is Y thermal
3/2 = 2.67× 10−8. This is further diluted by entropy production resulting from

the decay, i.e. Y thermal
3/2 → Y thermal

3/2 /∆XN
≈ 10−18. We see that the thermal contribution

to the gravitino abundance is negligible compared to that from non-thermal production.

A similar result follows for all other (s)particles that are thermally populated following

inflation. Therefore, the primary source of (s)particles, and in particular gravitinos and

Lightest SUSY Particles (LSPs), will result from non-thermal production resulting from

decays of the moduli.
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5.2.2 Meson/light moduli decays and the gravitino problem

The decay of the heavy modulus is followed by the decay of the meson, at around 10−6s

(for benchmark values). The meson will decay before the light moduli because of a larger

decay width compared to that for the light moduli (see appendix B for details). Similar to

the heavy modulus, the meson contribution to the energy density is small compared to that

of the N − 1 light moduli. Nevertheless, it produces some entropy (∆φ ≈ 121) and reheats

the universe to a temperature of around 134 MeV. The entropy production will again dilute

the abundance of light moduli, and any (s)particles present, including the gravitinos from

the heavy modulus decay.

The decay of the meson to gravitinos is particularly important, as this can result in

the well-known gravitino problem. If the scalar decay yields a large number of gravitinos,

these gravitinos can later decay producing a substantial amount of entropy that could spoil

the successes of BBN.

The entropy produced from the decay of the meson and the other light moduli further

dilutes the gravitino abundance from the heavy modulus. The primary contribution to the

gravitino relic abundance comes from the decay of the heavy modulus since the other fields

have masses of order 2 m3/2. After the decay of the meson, the energy density of the N −1

light moduli is the dominant contribution to the total energy density of the Universe.

Given that the N − 1 light moduli are approximately degenerate in mass, their decays

will occur at nearly the same time, after the decay of the meson. The resulting reheat

temperature is found to be approximately 32 MeV, which is an acceptable temperature for

consistency with the bound of 1 MeV set by BBN [57 – 60].

We note that the moduli decay rates have a strong dependence on the gravitino mass

(as it sets the moduli mass scale). So, the decay of the light moduli being able to avoid BBN

constraints is a result of the fact that the gravitino mass is relatively large (m3/2 & 50 TeV).

However, as explained in detail in [39], the gauginos are significantly suppressed relative to

the gravitinos allowing us to still obtain a light (<TeV) spectrum which can be seen at the

LHC. The decay of each modulus will contribute to the total entropy production, and one

finds that the total entropy production for the set of benchmark values of the microscopic

constants is given by ∆Xi = 418. We also note that the light moduli lifetime depends

inversely on the decay constant DXi , so if instead of taking relatively large values DXi = 4

we take relatively small values DXi = 0.4, we find a reheat temperature of 10 MeV which

is still compatible with BBN.7 The decay of light moduli to gravitinos is kinematically

suppressed for the same reason as for the meson. The final gravitino abundance is then

just the contribution from the heavy modulus decay diluted by the decay of the meson and

light moduli and is Y final
3/2 = Y φ

3/2/∆Xi ≈ 10−14 . The above gravitino abundance is well

within the upper bound on the gravitino abundance set by BBN constraints, as it will not

lead to any significant entropy production at the time the gravitinos decay. Thus, we find

that there is no gravitino problem in the G2-MSSM. In addition to the relativistic decay

products, the light moduli will also decay appreciably into neutralinos (LSPs), which we

consider in detail in the next section.

7See appendix A for a discussion of the range of the coefficients DXi
.
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6. Dark matter from the G2-MSSM

Natural models of electroweak symmetry breaking (EWSB) require additional symmetries

and particles beyond those of the Standard Model. The additional particles typically come

charged under additional discrete symmetries suppressing their decay to Standard Model

particles (e.g. R-parity, KK-parity, etc.), so such models predict an additional, stable,

weakly interacting particle with an electroweak scale mass, i.e. they naturally predict a

candidate for Weakly Interacting Massive Particle (WIMP) cold dark matter. In the case of

the G2-MSSM, this gives rise to a Wino-like neutralino which is the lightest supersymmetric

particle (LSP) of the theory.

For completeness in section 6.1 we will review the standard calculation for computing

the (thermal) dark matter relic density today. In section 6.2, we will then revisit this

calculation for non-thermal production of LSPs resulting from scalar decay. In section 6.3,

we examine how non-thermal production is naturally realized in the G2-MSSM and predicts

the Wino LSP as a viable WIMP candidate.

6.1 Standard thermal dark matter

In the standard calculation of the relic abundance of LSPs it is assumed that prior to

BBN the universe is radiation dominated. In particular, it is assumed that the dark

matter particles are created from a thermal bath of radiation created from (p)reheating

after inflation. In this radiation dominated universe, the Friedmann equation reads 3H2 =

m−2
p ρr, with ρr = (π2/30)g∗T

4 the radiation density and g∗ the number of relativistic

degrees of freedom at temperature T .

The evolution of LSPs are given by the Boltmann equation

ṅX = −3HnX − 〈σv〉
[

n2
X − n2

eq

]

, (6.1)

where 〈σv〉 is the thermally averaged cross-section, nX is the number density, and neq is

the number density of the species in chemical equilibrium, i.e. XX ↔ γγ, where γ is a

relativistic particle such as the photon.

Assuming that initially the dark matter particles are relativistic (mX < T ) and in

chemical equilibrium, then they will pass through three phases as the universe expands

and cools. Initially their density will be determined by all the factors on the right side

of (6.1). As long as the interactions of the particles take place on smaller time scales than

the cosmic expansion then the particles will remain close to their equilibrium distributions.

While the species is relativistic (mX < T ) this means that their comoving abundance is

given by YX = nX/s ≈ Y eq
X = const.. Once the universe cools enough from the cosmological

expansion so that X becomes non-relativistic (T < mX) then particle creation becomes

more difficult (Boltzmann suppressed) and the comoving abundance tracks that of a non-

relativistic species YX ≈ Y eq
X = 0.145 x3/2 exp(−x) where x ≡ mX/T . The particle density

will continue to decrease until the number of particles becomes so scarce that the expansion

rate exceeds the annhiliation rate and the particle species undergoes ‘freeze-out’. From (6.1)
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we see that at this time the number density is given by:

nX =
3H

〈σv〉

∣

∣

∣

∣

Tf

, (6.2)

where Tf indicates that this relation only holds at the time of freeze-out. Using (6.2) and

YX ≈ Y eq
X at the time of freeze-out, we find that freeze-out is only logarithmically sensitive

to the parameters of the model, xf ≡ mX
Tf

≈ ln [mXmp〈σv〉] and corrections are O(ln lnxf ).

Taking both the cross-section and mass mX to be weak scale at around 100 GeV we find

that xf = 4 and thus the freeze-out temperature is Tf = mX/25 ≈ 4GeV. From (6.2)

and (3.5), we find the comoving density at freeze-out:

Yf =
3H

s〈σv〉 , (6.3)

=
45

2π
√

10

1

σ0g
1/2
∗

(

1

mp〈σv〉Tf

)

, (6.4)

=
45

2π
√

10

1

σ0g
1/2
∗

(

mX

mp

)

xf , (6.5)

where we have taken 〈σv〉 = σ0m
−2
X . We note that this answer is rather insensitive to the

details of freeze-out, and the abundance is determined solely in terms of the properties of

the produced dark matter (mass and cross-section). In particular, there is no dependence

on the underlying microscopic physics of the theory.

6.2 Non-thermal production from scalar decay

We know from the successes of BBN that at the time the primordial light elements were

formed the universe was radiation dominated at a temperature greater than around an

MeV. However, perhaps surprisingly, there is no evidence for a radiation dominated universe

prior to BBN. In particular, we have seen that in the presence of additional symmetries

and flat directions, scalar moduli can easily dominate the energy density of the universe

and then later decay. The presence of these decaying scalars can alter the standard cold

dark matter picture of the last section in significant ways.

To understand this, consider the decay of an oscillating scalar condensate φ, which

decays at a rate Γφ ∼ m3
φ/m

2
p. When the expansion rate becomes of order the scalar decay

rate (H ∼ Γ) the scalars will decay into LSPs along with relativistic (s)particles which

reheat the universe to a temperature Tr. If this reheat temperature is below that of the

thermal freeze-out temperature of the particles Tf ∼ mX/25 then the LSPs will never reach

chemical equilibrium. As an example, if we consider a scalar mass mφ ∼ 10− 100 TeV this

gives rise to a reheat temperature Tr ∼
√

Γφmp & MeV where Γφ ∼ m3
φ/m

2
p. The decay of

φ in a supersymmetric setup could lead to LSPs with weak-scale masses mX ∼ 100 GeV,

which have a thermal freeze-out temperature Tf ∼ mX/25 ∼ few GeV. We see that in this

case Tr < Tf is quite natural and the particles are non-thermally produced at a temperature

below standard thermal freeze-out. Thus, the particles will be unable to reach chemical

equilibrium.

Depending on the yield of dark matter particles from scalar decay, there are two

possible outcomes of the non-thermally produced particles.
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6.2.1 Case one: LSP yield above the fixed point

If the production of LSPs coming from scalar decay is large enough, then some rapid

annihilation is possible at the time of their production. Since the particles are produced at

the time of reheating, we know from the Boltzmann equation (6.1) that the critical density

for annihilations to take place is:

ncX =
3H

〈σv〉

∣

∣

∣

∣

Tr

, (6.6)

which is different from the result (6.2) in that here the reheat temperature and not the

thermal freeze-out is the important quantity. This is very important because Tr ∼
√

Γφmp

depends on the microscopic parameters of the theory as the reheat temperature is set by

the decay rate of the scalar. In the standard case, we saw that the freeze-out temperature,

or more precisely, the parameter xf ≡ mX/Tf was only logarithmically sensitive to the

parameters of the dark matter and gave no information at all about the underlying theory

from which the dark matter was produced (e.g. scalars from the underlying microscopic

physics).

Given that the initial number density of particles exceeds the above bound (nX(0) >

ncX), the LSPs will quickly annihilate until they reach the density (6.6). Thus, the critical

value ncX serves as a fixed point for the number density, since any production above this

limit will always result in the same yield of particles given by ncX . From this one finds the

comoving density [40]

YX =
c1

g
1/2
∗

1

mp〈σv〉Tr
= Y std

X

(

Tf
Tr

)

, (6.7)

where c1 = 45/(2π
√

10). We see that non-thermal production can yield a greater comoving

density than standard thermal production by a factor (Tf/Tr). For the example considered

above, namelymφ ∼ 10−100 TeV, mX ∼ 100 GeV, and Tr ∼ few MeV we find the comoving

density is enhanced by a factor ∼ 102−103. One interesting consequence of this is it allows

room for larger annihilation cross-sections for the LSPs. For example, in standard thermal

production a Wino-like LSP leads to too small a relic density since its annihilation cross

section is only s-wave suppressed . In the case of the G2-MSSM, non-thermal production is

a natural consequence of the microscopic physics and a Wino LSP will provide a perfectly

suitable WIMP candidate.

6.2.2 Case two: LSP yield below the fixed point

The other possibility is that the decay of the scalar yields few enough LSPs (nX(0) < ncX)

so that annihilation does not occur. Then the comoving abundance is simply given by

YX = Bφ∆
−1
φ Y

(0)
φ ∼

Bφn
(0)
φ

T 3
r

, (6.8)

where Bφ is the branching ration of scalars to LSPs and Y
(0)
φ is the initial abundance of

scalars in the decaying condensate. We note that again this result depends on the under-

lying physics of the UV theory, since both the branching ratio and the reheat temperature

are coming from the physics of the scalar.
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6.3 Dark matter in the G2-MSSM

As shown in [39], the LSP in the G2-MSSM is predominantly Wino-like. There are two

significant sources of these LSPs in the G2-MSSM — direct production from decays of

both the gravitino and the light moduli. As explained earlier, the thermal abundance of

LSPs in the early plasma after inflation is vastly diluted by the entropy productions from

the heavy modulus, meson and the light moduli. Therefore, the thermal abundance of

LSPs is negligible. In addition, the LSPs produced from decays of the heavy modulus and

the meson field are also diluted by the entropy production from the light moduli and are

negligible as well.

The light moduli may decay to LSPs directly, or via decay to superpartners. From

section 4 the branching ratio for this process to occur for a set of benchmark values of the

microscopic paramaters is BXi
LSP ∼ 25% and the comoving abundance is then found to be:

Y
(Xi)
LSP = ∆−1

Xi
BXi

LSP(N − 1)Y
(φ)
Xi

= 1.19 × 10−7, (6.9)

where ∆Xi = 417.7 [(N)/100]3/4 is the entropy production from the decay of all the light

moduli Xi. Here we have taken benchmark value for the number of light moduli to be 100.

The corresponding number density at the time of reheating is

nLSP = s(TXi
r )YLSP, (6.10)

= 1.79 × 10−11 GeV3 (6.11)

As discussed in the last section, we must compare this number density of LSPs to that of

the critical density for annihilations (6.6). At the time of reheating from the light moduli

the Hubble parameter is given by

H(tr) =

(

π2g∗
90

)1/2
(TXi
r )2

mp
= 4.48 × 10−22 GeV. (6.12)

The dominant (s-wave) annihilation cross section for the LSPs (W̃ 0W̃ 0 →W+W−) is given

by

〈σv〉 = σ0m
−2
LSP =

1

m2
LSP

g4
2

2π

(1 − xw)3/2

(2 − xw)2
= 3.26 × 10−7 GeV−2, (6.13)

where xw = m2
w/m

2
LSP, mw = 80.4 GeV is the W -boson mass, and g2 ≈ 0.65 is the gauge

coupling constant of SU(2)L at temperatures Tr ∼MeV, and this defines σ0. It is crucial

that the cross-section is s-wave so that there is no temperature dependence in 〈σv〉. We

will comment more on this in section 7. Using (6.6) we find the fixed point density for

annihilations

ncLSP = 4.12 × 10−15 GeV3. (6.14)

We see that the produced density is greater than the fixed point value nXi
LSP > ncLSP and

annihilations will occur. This corresponds to the “LSP yield above the fixed point” case

discussed above. Thus, the LSPs produced will quickly annihilate down toward the fixed

point value in less than a Hubble time. The relic density of dark matter is then given by
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the fixed point value (6.14) and the critical density of LSPs today coming from decay of

the light moduli is

ΩXi
LSP =

mLSPY
c
LSP

ρc/s0
=

1

ρc/s0

(

45

2π
√

10g∗σ0

)

(

m3
LSP

mp T
Xi
r

)

= 0.76 h−2 (6.15)

where s0 and ρc are the entropy density and critical density today, respectively, and we

have used the experimental value ρc/s0 = 3.6 × 10−9h2 GeV with h parameterizing the

Hubble parameter today with median value h = 0.71.

In addition to this contribution, there is also the contribution from the decay of non-

thermal gravitinos produced from the heavy modulus which have a final abundance Y final
3/2 ≈

10−14. The contribution from gravitinos to the critical density of dark matter is then

Ω
(3/2)
LSP =

mLSPY
final
3/2 s0

ρc
= 0.0008h−2 , (6.16)

which is negligible compared with that coming from the light moduli.

Thus, the total critical density in dark matter coming from the LSPs of the G2-MSSM

is:

ΩLSP h
2 ≈ 0.27

( mLSP

100GeV

)3
(

10.75

g∗(Tr)

)1/4(3.26 × 10−7GeV−2

〈σv〉

)

× (6.17)

×
(

4

DXi

)1/2(2m3/2

mXi

)3/2 (100 TeV

m3/2

)3/2

,

where we have included all the parametric dependence of the answer derived in appendix

B. This value should be compared to the experimental value ΩCDMh
2 = 0.111± 0.006 [61].

For those used to 〈σv〉 in other units, note that 1GeV−2 = 0.4 × 10−27cm2.

This result is not presented in terms of central values — rather it is the best value

we can obtain. The LSP mass can be larger than 100 GeV, but not smaller. The decay

constant DXi can be order 4, but a scan of the microscopic parameter space suggests a

somewhat smaller value for the only calculable example so far known (see appendix B.4).

A better understanding of the string theory could give 4 or a larger value. Whereas m3/2 is

somewhat constrained to be at most about 100 TeV by the parameters of the framework, as

explained in [39]. Therefore, this framework is rather constrained and predictive. We view

the closeness of this result as a success, and as an indication that improving the underlying

theory may improve the agreement with data.

7. Discussion of results

We have seen in the previous sections that for natural values of microscopic parameters,

there is no moduli and gravitino probem in realistic G2 compactifications. In addition,

within the G2-MSSM, the non-thermal production of Wino LSPs from the light moduli

give rise to a relic density with the right order of magnitude (up to factors of a few). It

is possible that with a more sophisticated understanding of the theory, one could obtain a

– 22 –



J
H
E
P
0
6
(
2
0
0
8
)
0
6
4

result more consistent with the observational results. It is also worthwhile to understand

these results from a physical point of view. The results obtained above depend surprisingly

little on many of the details of the microscopic parameters. In particular, there is essentially

no dependence of the final relic density on the total number of moduli (N), the masses

(mXN
,mφ) and couplings (DXN

,Dφ) of the heavy modulus and meson fields as well as the

initial amplitudes of the moduli (fXk
) and meson (fφ) fields. This is good in a sense since

our understanding of the underlying theory and many of the above microscopic parameters

is incomplete. However, the result does depend crucially on certain qualitative (and also

some quantitative) features of the underlying physics, as we discuss below. In general it is

better if results depend on the microscopic theory, since then data can tell us about the

underlying theory.

One very important feature which helps avoid the gravitino problem is that the meson

and light moduli have masses which are of order (actually slightly below) two gravitino

masses, as we saw explicitly in section 4.1, This kinematically suppresses their decays to

the gravitino. The gravitino abundace is thus dominated by decay of the heavy modulus

which is further diluted by entropy production from the decays of the meson and light

moduli. Therefore, a natural mechanism for solving the gravitino problem in a generic

setup is that the modulus which decays last does not decay to the gravitino, The moduli

problem can also be easily solved in frameworks where the gravitino mass is & 10 TeV,

which is naturally satisfied in the G2 framework.

Another qualitative feature of the G2 framework is that there is a hierarchy in the time

scales of decay of the various moduli (meson) fields. Since the mass of the heavy modulus is

much larger (∼ 300 times) than that of the other moduli (meson), it decays much earlier.

Also, from our current understanding of the Kähler potential of the meson and moduli

fields, one finds (see appendix B) that the meson decays before the light moduli due to a

larger decay width. The precise computation of the decay width depends on the nature

of the Kähler potential for the meson and moduli and the Kähler metric for matter fields,

and one might argue that there are inherent uncertainties in our understanding of these

quantities. However, the only qualitative feature relevant for cosmological evolution is that

the meson decays before the light moduli. As long as the light moduli decay last (which

we have argued in the appendix to be the natural case from our current understanding

of the Kähler potential), the result does not depend on any of the masses and couplings

of the heavy modulus or the meson field. The final result depends only on the masses

and couplings of the light moduli which decay last. The same qualitative feature could be

present in other frameworks arising from other limits of string/M theory.

Now that it is clear that it is the light moduli decaying at the end which affect the

final relic density, it is important to understand their effect more closely. In any theory of

(soft) supersymmetry breaking, the mass of the light moduli will be set by the gravitino

mass scale. In the context of low energy supersymmetry, the gravitino mass will typically

be in the range 1− 100 TeV. Therefore, the light moduli will also be typically in the above

range.8 Since the reheat temperature of the moduli basically depends on the moduli masses

8This is however not true for Large Volume compactifications as the lightest modulus in that case is
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(assuming the coefficient DXi is O(1)), the light moduli will typically give rise to a reheat

temperature TXi
r of O(1 − 100) MeV, which is far smaller than the freezeout temperature

of the LSPs (TLSP
f ∼GeV) which could be produced from the light moduli. This is true

for the G2 framework and could be true for many other frameworks as well. Therefore,

with TXi
r < TLSP

f , the final outcome for the relic density will depend on the whether the

number density of the LSPs produced from the light moduli (n
(Xi)
LSP ) is greater or smaller

than the critical number density at TXi
r (n

(c)
LSP|TXi

r
).

For the G2 framework, for natural values of the microscopic parameters one finds that

n
(Xi)
LSP > n

(c)
LSP|TXi

r
as shown in section 6.3. This is equivalent to the inequality:

B
(Xi)
LSP DXi >

1.5

σ0
(
m2

LSP

m2
Xi

) ≈ 120 γ2

with γ ≡ mLSP

m3/2
(7.1)

where σ0 is defined by (6.13) and we have used mXi ≈ 1.96m3/2. As explained in [39],

the quantity γ depends predominantly on δ, which characterizes the threshold correction

to the gauge couplings at the unification scale. The dependence on other microscopic

parameters such as V7 and C2 (see section 4) is largely absorbed into the gravitino mass.

The suppression factor γ depends almost linearly on |δ|, and typically takes value in the

range ∼ (1−6)×10−3. Now, the constraint (7.1) is easy to understand. For natural values

of microscopic parameters in the G2 framework, one has B
(Xi)
LSP = O(25%), DXi = O(1)

(see appendix B) which easily satisfy (7.1) above. In order for other frameworks to realize

this situation, a criterion similar to (7.1) needs to be satisfied.

When (7.1) is satisfied, the final relic density can be written as (see (6.14) and (6.17)):

ΩLSP h
2 ≈ mLSPY

c
LSP

ρc/s0
=

1

ρc/s0

(

45

2π
√

10g∗σ0

)

(

m3
LSP

mp T
Xi
r

)

≈ 1

ρc/s0

(

45

2
√

10π(40g∗)1/4σ0

)

(

m3
LSP

D
1/2
Xi
m

1/2
p m

3/2
Xi

)

≈ 18 GeV−3/2

(

m
3/2
LSPγ

3/2

D
1/2
Xi

)

= 18 GeV−3/2





m
3/2
3/2γ

3

D
1/2
Xi



 (7.2)

An upper bound on the observed value of the relic density implies that smaller values of γ

and mLSP and larger values of DXi are preferred. A small γ implies that for a given LSP

mass a heavier gravitino is preferred implying that the moduli be correspondingly heavier.

Also, since γ is roughly linear in |δ|, smaller values of |δ| are preferred. These features can

be seen easily from the plots in figures 1 and 2. Figure 1 shows a contour plot of the relic

density in the DXi −m3/2 plane for two (large and small) values of |δ| which correspond

to two (large and small) values of γ.

Figure 2 shows the dependence of the relic density on the reheat temperature of the

light moduli (TXi
r ). As seen from the first line in (7.2), the relic density is inversely

much lighter than m3/2 [25].
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Figure 1: The contour plot of the relic density in the G2-MSSM in the DXi
−m3/2 plane for two

(large and small) values of |δ| which correspond to two (large and small) values of γ. The solid lines

are for δ = −3 (a correction to α−1

unif
of order 3/26), and the dashed lines for δ = −4.5.

proportional TXi
r implying that a higher reheat temperature is preferred. A higher TXi

r

corresponds precisely to a larger DXi and mXi (larger m3/2) as explained above.

As explained in section 6.3, the nature of the LSP is also crucial to the final result for

the relic density. For the G2 framework, the annihilation cross-section is s-wave and does

not depend on TXi
r . On the other hand, if the LSP were Bino, the cross-section would be

p-wave suppressed and would depend linearly on TXi
r /mLSP, thereby making it suppressed

relative to the s-wave result. This would make the relic density much larger than the result

obtained for the s-wave case above. Therefore, the upper bound on relic density prefers

small mixing angles (or vanishing mixing angles, as in the G2-MSSM) with the Bino and

Higgsino components. This can be seen from figure 3.

8. Summary and future directions

In this paper we have emphasized the importance of the cosmological moduli and gravitino

problems and the relation to adequate generation of dark matter in thermal equilibrium,

or generation of too much dark matter non-thermally in string/M theory frameworks.

Focussing on G2 compactifications, in particular on the G2-MSSM, we have found that

the decay of moduli in this framework is rather naturally consistent with BBN constraints,

and the associated large entropy production at late times (but before BBN) results in an
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Figure 2: The LSP relic density for the G2-MSSM plotted as a function of the reheat temperature

of the light moduli. The solid line assumes no coannihilation with charged Winos; the dashed line

includes coannihilation with charged Winos.

avoidance of the gravitino problem(s). Moreover, we have seen that the late decay of the

light moduli into Wino-like neutralinos leads to a nearly acceptable relic density of cold

dark matter. This result arises from a combination of entropy production and LSPs from

moduli decay giving an adequate relic density from non-thermal production of dark matter.

This process offers an explicit example of how thermal dark matter production is not the

dominant source of cosmological dark matter, especially in the presence of moduli. The LSP

is Wino-like here as well as in anomaly mediated theories, but for interestingly different

reasons – here the tree level gaugino masses are universal but about the same size as the

anomaly mediated ones, and the finite one loop Higgsino is comparable with both.

The result for the final relic density depends parametrically on the couplings and mass

of the light moduli (which decay last) and the mass of the LSP. The masses of the light

moduli and the LSP are set by the gravitino mass scale and depend on a set of underlying

microscopic parameters of the theory. The couplings of the moduli depend on the Kähler

potential of the theory. Since our understanding of the Kähler potential is incomplete, it

is only possible to make reasonable assumptions to proceed, which is what we have done,

but one can see that most of the results are insensitive to these uncertainties. That is

because the moduli decays produce a large number density of LSPs, which then annihilate

down to the final relic density that only depends on the reheating temperature. From (7.2)

and figure 1, we see that an upper bound on the relic density prefers a light LSP, heavy

– 26 –



J
H
E
P
0
6
(
2
0
0
8
)
0
6
4

0 0.25 0.5 0.75 1 1.25 1.5

Θ

0.01

1

100

10000

1. ´ 106

1. ´ 108
W

h
2

200 MeV

100 MeV
50 MeV

20 MeV

Figure 3: The LSP relic density in the G2-framework plotted as a function of the mixing angle of

Bino and Wino for M2 = 100GeV.

gravitino and large couplings to the visible sector parameterized by DXi (defined in (4.19)).

These results obtained have been explained in terms of the underlying qualitative features

of the framework. These qualitative features could be present in other string/M theory

frameworks as well, leading to similar results.

There is not yet a satisfactory inflation mechanism for the G2-MSSM. This is under

study. Fortunately, our results are not sensitive to that. We assume only that at an early

time inflation ends and the energy density of the universe is dominated by moduli settling

into the minimum of the potential.

In future, one would like to understand the origin of the baryon asymmetry in the

Universe (BAU) within string/M theory frameworks. In the G2 framework, the large en-

tropy production resulting from the decay of the moduli was crucial for addressing the

gravitino problem. However, this entropy will also act to reduce any initial baryon asym-

metry. Therefore, one requires a large initial asymmetry or a late-time mechanism for

regeneration of the asymmetry. For example, a large initial baryon asymmetry could arise

from the Affleck-Dine mechanism [62], or it could happen that the superpartner parameter

space allows for late-time electroweak baryogenesis. This is work in progress.

Understanding the above issues would be crucial to solving the “cosmological inverse

problem” (see [63, 64] for some preliminary work in this direction), usually considered

separate from the “LHC Inverse Problem” [65]. Within the context of realistic string/M
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theory frameworks, however, the two inverse problems merge into one “inverse problem”

as the microscopic parameters characterizing the underlying physics of any framework

have predictions (at least in principle) for both particle physics as well as cosmological

observables, thereby providing unique connected insights into these basic issues.
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A. Cosmology of the G2-MSSM moduli — A detailed treatment

In this appendix, we include detailed calculations leading to the abundances, entropy pro-

duction, and reheat temperatures quoted in the paper for sets of benchmark values of the

microscopic parameters. The computation of couplings and decay widths of the moduli and

meson fields in terms of the microscopic parameters which motivate the benchmark values

will be given in appendix B. We have retained the parametric sensitivity to the gravitino

mass, number of moduli (topology), and the overall couplings of the moduli (meson) in

order to address the robustness and plausibility of the framework.

A.1 Heavy modulus oscillations

At the time the heavy moduli (XN ) starts coherent oscillations the universe is radiation

dominated and the Hubble equation is given by

3H2 = 3

(

1

2
mXN

)2

= m−2
p

(

π2

30

)

g∗T
4. (A.1)

The temperature at which the modulus starts oscillating is then given by

TXN
osc =

(

90

4π2

)1/4

g
−1/4
∗ (TXN

osc ),

= 2.70 × 1012

(

228.75

g∗(T
XN
osc )

)1/4
(

mXN

600m3/2

)1/2

GeV. (A.2)

From this we find the entropy density

s(TXN
osc ) =

2π2

45
goscT

3
osc, (A.3)

= 1.98 × 1039
( gosc

228.75

)1/4
(

mXN

600m3/2

)3/2

GeV3, (A.4)
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and the comoving abundance is then

Y
(0)
XN

=
1

2
mXN

f2
XN

s−1(TXN
osc ),

= 4.51 × 104

(

228.75

g∗(Tosc)

)1/4(fXN

mp

)2(600m3/2

mXN

)1/2

, (A.5)

The oscillating modulus will quickly come to dominate the radiation density and the

temperature at this time is given by

TXN
eq = 1.80 × 1012

(

228.75

g∗(T
XN
osc )

)1/4
(

mXN

600m3/2

)1/2(fXN

mp

)2

GeV, (A.6)

so that we see once the modulus starts coherent oscillations it quickly overtakes the energy

density (i.e., TXN
eq ≈ TXN

osc ).

A.2 Meson and light moduli oscillations

Because the meson and light moduli are approximately degenerate in mass (i.e. mφ = mXi)

they will begin to oscillate at the same time,

3H2 = 3

(

2

3
mφ

)2

= m−2
p

(

π2

30
g∗(T

φ
osc)

(

T φosc

)4
+mXN

YXN
s(T φosc)

)

. (A.7)

Noting that the radiation term has already become negligible compared to the heavy mod-

ulus density we find the temperature at this time is given by

T φosc =

(

30

π2

)1/3
[

m2
φm

2
p

g∗s(T
φ
osc)mXN

YXN

]1/3

, (A.8)

= 8.24 × 1010

(

228.75

g∗(T
XN
osc )

)1/4
(

mφ

2m3/2

)2/3(600m3/2

mXN

)1/6 ( mp

fXN

)2/3

GeV

which is in excellent agreement with the exact answer obtained numerically (including

radiation) T φosc = 9.97 × 1010. The entropy density at this time is

s(T φosc) = 5.62 × 1034

(

g∗(T
XN
osc )

228.75

)1/4(
mφ

2m3/2

)2(600m3/2

mXN

)1/2( mp

fXN

)2

GeV3, (A.9)

The meson φ initial abundance is then

Y
(0)
φ = 5.30 × 106

(

228.75

g∗(Tosc)

)1/4 ( fφ
mp

)2(fXN

mp

)2( mXN

600m3/2

)1/2(2m3/2

mφ

)

. (A.10)

The light moduli will begin coherent oscillations at roughly the same time as the meson.

Their abundance is then given by

Y
(0)
Xi

= (N − 1)Y
(0)
φ (A.11)

= 5.25 × 108

(

N − 1

99

)(

228.75

g∗(Tosc)

)1/4(fXi

mp

)2(fXN

mp

)2( mXN

600m3/2

)1/2(2m3/2

mXi

)

,
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where we have implicitly assumed that because the masses of the meson and light moduli

are approximately degenerate they will have equal oscillation amplitudes.9

A.3 Heavy modulus decay

Once the Hubble parameter decreases to the point when H ≈ ΓXN
, the heavy modulus

decays and from (3.11) the corresponding reheat temperature is,

TXN
r = 41.40

(

10.75

g∗(T
XN
r )

)1/4
(

DXN

1.6

)1/2( mXN

600 m3/2

)3/2(mp

fφ

)1/2 (100

N

)1/4

GeV.

(A.12)

To understand the N and φ dependence in this expression, we note that from (3.11) the

reheat temperature includes the factor,
(

mXN
YXN

+mφYφ +mXiYXi

mXN
YXN

)1/4

(A.13)

Using that the meson and light moduli have degenerate mass and therefore equal oscillation

amplitudes (i.e. mXiYXi = (N − 1)mφYφ) we find
(

1 +N
mφYφ

mXN
YXN

)−1/4

≈
(

N
mφYφ

mXN
YXN

)−1/4

(A.14)

which leads to the parametric dependence in the reheat temperature.

Using (3.14) the entropy increase resulting from the heavy modulus decay is

∆XN
= 4.35 × 1010

(

g∗(T
XN
r )

10.75

)1/4
(

228.75

g∗(T
XN
osc )

)1/4
(

fXN

mp

)2( 1.6

DXN

)1/2

×
(

600 m3/2

mXN

)(

fφ
mp

)1/2( N

100

)1/4

,

(A.15)

where we have again used (A.14). Therefore, after the decay the other moduli abundances

are given by

Y
(XN )
φ = ∆−1

XN
Y

(0)
φ ,

= 1.22 × 10−4

(

10.75

g∗(T
XN
r )

)1/4
(

DXN

1.6

)1/2( fφ
mp

)3/2

×

×
(

mXN

600m3/2

)3/2(2m3/2

mφ

)(

100

N

)1/4

(A.16)

Y
(XN )
Xi

= ∆−1
XN

Y
(0)
Xi
,

= 1.21 × 10−2

(

10.75

g∗(T
XN
r )

)1/4
(

DXN

1.6

)1/2(fXi

mp

)3/2

×

×
(

mXN

600m3/2

)3/2(2m3/2

mXi

)(

N

100

)3/4

, (A.17)

9We note that initially this may not be the case, but at the onset of coherent oscillations (much less

than a Hubble time) the system will settle into this symmetric configuration.
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where we have again used N − 1 ≈ N . There is also a decay to gravitinos with branching

ratio B
(XN )
3/2 = 0.2% = 0.002. The corresponding comoving abundance is thus,

Y
(XN )
3/2 = 2 ×B3/2 ×

Y
(0)
XN

∆XN

,

= 1.45 × 10−9

(

B3/2

0.07%

)

(

10.75

g∗(T
XN
r )

)1/4 (
DXN

1.6

)1/2

×

×
(

mXN

600m3/2

)1/2(mp

fφ

)1/4(100

N

)1/4

, (A.18)

A.4 Meson decay

When the meson decays, its contribution to the total energy density will be less than that

of the other N−1 light moduli. The universe will be matter dominated before and after the

decay, but because the two energy sources are comparable there is a somewhat significant

entropy production. The meson decay reheats the universe to a temperature

T φr = 134 ×
(

100

N

)1/4( 10.75

g∗(Tr)

)1/4( Dφ

711.6

)1/2( mφ

2m3/2

)3/2

MeV. (A.19)

The entropy increase is given by

∆φ = 121 ×
(

DXN

1.6

)1/2(711.6

Dφ

)1/2( mXN

600m3/2

)3/2(2m3/2

mφ

)3/4( fφ
mp

)3/2

. (A.20)

The decay of the meson will further dilute the other moduli, we find

Y
(φ)
Xi

= ∆−1
XN

∆−1
φ Y

(0)
Xi
,

= 9.94 × 10−5

(

N

100

)3/4( 10.75

g∗(Tr)

)1/4 ( Dφ

711.6

)1/2 (2m3/2

mXi

)1/4

. (A.21)

The decay of both the meson and the light moduli to gravitinos is kinematically suppressed,

so that the only source of gravitinos comes from the decay of the heavy modulus. This

abundance after the decay of the meson is then

Y (φ)
m3/2

= ∆−1
φ Y (XN )

m3/2
,

= 1.19 × 10−11





B
(XN )
3/2

0.07%





(

100

N

)1/4( 10.75

g∗(Tr)

)1/4( Dφ

711.6

)1/2

×

×
(

mφ

2m3/2

)3/4(600m3/2

mXN

)(

mp

fφ

)7/4

. (A.22)

A.5 Light moduli decays

The decay of the light moduli results in a reheating temperature

TXi
r = 31.7 ×

(

10.75

g∗(Tr)

)1/4( mXi

2m3/2

)3/2 (DXi

4

)1/2

MeV, (A.23)
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which agrees with the bounds set by BBN (i.e. TXi
r > 1MeV). The resulting entropy

production is

∆Xi = 417.7 ×
(

Dφ

711.6

)1/2( 4

DXi

)1/2 (2m3/2

mXi

)3/4( N

100

)3/4

. (A.24)

The new gravitino abundance is given by

Y (Xi)
m3/2

= ∆−1
Xi
Y (φ)
m3/2

, (A.25)

= 2.86 × 10−14





B
(XN )
3/2

0.07%





(

100

N

)(

10.75

g∗(Tr)

)1/4( mφ

2m3/2

)3/2

×

×
(

600m3/2

mXN

)(

DXi

4

)1/2(mp

fφ

)7/4

(A.26)

which is small enough to avoid the gravitino problem. The light moduli will decay into

LSPs yielding an abundance

Y
(Xi)
LSP = ∆−1

Xi
BXi

LSPY
(φ)
Xi

,

= 1.19 × 10−7

(

BXi
LSP

25%

)

(

10.75

g∗(Tr)

)1/4( mXi

2m3/2

)1/2(DXi

4

)1/2

, (A.27)

where BXi
LSP is the branching ratio for the decay of the light moduli to LSPs. This corre-

sponds to a number density at the time of decay of nLSP = 1.79 × 10−11 GeV3.

As we noted in the text, this abundance is produced below the freeze-out temperature

of the LSPs (non-thermal production) and is greater than the critical density (6.6) for

annihilations to take place, which is ncXi
= 4.12×10−15 GeV3. Thus, the LSPs will quickly

annihilate (in less than a Hubble time) and the final abundance will be given by the critical

value.

Thus, the relic density coming from the decay of the light moduli is given by

ΩLSP =
mLSPY

c
LSPs0

ρc
,

= 0.26h−2
( mLSP

100GeV

)3
(

10.75

g∗(Tr)

)1/4(3.26 × 10−3GeV−2

σ0

)

×

×
(

4

DXi

)1/2(2m3/2

mXi

)3/2(100TeV

m3/2

)3/2

, (A.28)

where s0 and ρc are the entropy density and critical density today respectively, and we have

used the experimental value ρc/s0 = 3.6 × 10−9h2 GeV where h parametrizes the Hubble

parameter today with median value h = 0.71.

B. Couplings and decay widths of the moduli and meson fields

In this section, we discuss the moduli couplings to MSSM particles and then calculate their

decay widths in terms of the microscopic parameters of the G2-MSSM framework. This

will motivate the benchmark values used for numerical results throughout the paper. We

will find that the moduli decay into scalars is very important.
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B.1 Moduli couplings

Let us first consider the couplings associated with N eigenstates Xj of the geometric moduli

si. For simplicity, we neglect the small mixing with the meson modulus φ (we will return to

that later). First consider the moduli coupling to gauge bosons through the gauge kinetic

function f sm. The relevant term is:

L ⊃ −1

4
Im(fsm)F aµνF

aµν (B.1)

= −1

4
〈Im(fsm)〉F aµνF aµν −

1

4

∑

i

N sm
i δsiF

a
µνF

aµν (B.2)

where we have expanded the moduli as si = 〈si〉 + δsi. After normalizing the gauge fields

and the moduli fields, the interaction term can be written as:

LXjgg =
1

4 fsm

N
∑

i=1

N sm
i

√

2〈si〉
3ai

Uij XjF
a
µνF

aµν (B.3)

=

√
7

6
√

2
B Cj XjF

a
µνF

aµν , (B.4)

where B and Cj are defined as:

B ≡
(

N
∑

i=1

N sm
i

Ni
ai

)−1

(B.5)

Cj ≡
N
∑

i=1

N sm
i

Ni
( ~XN )i( ~Xj)i. (B.6)

For the heavy modulus, since (XN )2i = 3
7ai, we have CN = 3

7B−1 while for the light moduli

Xi, i = 1, . . . , (N − 1), it is easy to show:

N−1
∑

i=1

C2
i = l2 sin2 θ, (B.7)

where l is the length of the vector ~X
′

N defined as ( ~X
′

N )i ≡ ( ~XN )iN
sm
i /Ni and θ is the

angle between ~X
′

N and ~XN . So, generically Ci are less than one. There are two extreme

cases: one when N sm
i = kNi in which the moduli couplings to gauge bosons vanish since

the vector ~XN is orthogonal to ~Xj , and the other when ~X
′

N equal to one of the Xi’s in

which all Ci’s are zero except one.

For the couplings to gauginos, the dominant contribution comes from the following

terms in the lagrangian:

L ⊃ − i

4
∂ifsmF

iλaλa + h.c. (B.8)

where ∂ifsm = N sm
i and −i arises because of the convention of the moduli chiral fields

zi = ti + isi we used. Expanding the F -terms of the moduli fields around their vevs, we

have:

F i = 〈F i〉 + 〈∂sk
F i〉δsk (B.9)
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The derivative of the F -term can be calculated as follows:

∂sk
F i = ∂sk

(

eK/2Kij̄(Kj̄W
∗ +W ∗

j̄ )
)

= −ie−iγm3/2

(

4

3

ai
Ni
Nkν

2 z̃

x̃
+

4

3

Nk

Ni
(3ai − 2δik)ν

ỹ

x̃
+
Nk

Ni
(3ai − 2δik)

)

= −ie−iγm3/2

(

−4

3
siNkb1b2ν − 3

Nk

Ni
ai + 2δik + · · ·

)

(B.10)

where in the last line, the subleading terms are not explicitly shown. γ is the phase in the

superpotential which will be set to zero for simplicity without affecting any result here.

We have used the following equations:

∂siK = −3ai
si
, Kij̄ =

4s2i
3ai

δij̄ , ∂sk
Kij̄ =

2

sk
Kij̄δik (B.11)

After normalizing the moduli fields and the gauge fields, the couplings are given by:

LXiλλ ≈ 1

4

√

2

3
m3/2

[

(

4

3
ν2b1b2

) N
∑

k=1

a
1/2
k Uki −

1

fsm
2ν

N
∑

k=1

N sm
k

Nk
a

1/2
k Uki

]

Xiλ
aλa + h.c.

=

√
14

12
m3/2

[

4

3
ν2b1b2( ~XN · ~Xi) − 2B ( ~X ′

N · ~Xi)

]

Xiλ
aλa + h.c. (B.12)

For the light moduli fields, the first term vanishes and the couplings turn out to be:

LXlλλ ≈ −
√

14

6
B Cim3/2 Xiλ

aλa + h.c. (B.13)

For the heavy modulus field, the first dot product is unity and the coupling is:

LXlλλ ≈
√

14

12
m3/2

(

4

3
ν2b1b2

)

Xiλ
aλa + h.c. (B.14)

The moduli couplings to other MSSM particles can be derived generically by expanding

all the moduli around their vevs in the supergravity lagrangian:

L ⊃ K̃ᾱβDµf̃
∗ᾱDµf̃β + iK̃ᾱβf

†ᾱσ̄µDµf
β − V (f̃∗, f̃) + · · · (B.15)

where fα and f̃α are fermions and their superpartners. The other derivative terms involving

moduli and matter fields are not explicitly shown for simplicity. The relevent coupling here

are the moduli-sfermion-sfermion coupling and the moduli-fermion-fermion coupling. They

are found to be

L ⊃ ∂siK̃ᾱβ

[

δsi ∂µf̃
∗ᾱ∂µf̃β + iδsi f

†ᾱσ̄µ∂µf
β
]

− ∂sim
′2
ᾱβ δsif̃

∗ᾱf̃β + · · · (B.16)

= g′
α
Xif̃ f̃

[

∂µ(Xi f̃
∗ᾱ
c )∂µf̃αc + c.c.+ iXi f̄

ᾱ
c σ̄

µ∂µf
α
c

]

− gα
Xif̃ f̃

Xif̃
∗ᾱ
c f̃αc + · · · (B.17)
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where f̃αc and fαc are the canonical normalized fields. For simplicity, we consider the Kahler

metric to be diagonal K̃ᾱβ = K̃αδᾱβ , then

gα
Xj f̃ f̃

≈ m2
3/2∂si log(K̃α)

√

2s2i
3ai

Uij

=

√
14

3
m2

3/2 ( ~X ′′
N )α · ~Xj (B.18)

g′
α
Xj f̃ f̃

=

√
14

6
( ~X ′′

N )α · ~Xj (B.19)

where ( ~X ′′
N )αi ≡ ξi,α(XN )i/ai and ξi,α ≡ si∂si log(Kα). In this calculation, we have used

the fact that ∂φ0
K̃α = 0 and have neglected terms involving F -terms of geometric moduli

F i which are suppressed relative to m3/2.

For the couplings to the higgs doublets, there are differences from other scalars. The

kinetic terms and the mass terms for the higgs fields in the MSSM can be written as:

L ⊃ K̃Hu

[

∂µH
∗
u∂

µHu + i ¯̃Huσ̄
µ∂µH̃u

]

+ · · ·

−(K̃−1
Hd

|µ′|2 +m′2
Hu

)H∗
uHu + (Hu ↔ Hd)

−(Bµ′HdHu + c.c.) (B.20)

where

µ′ = m3/2Z − F̄ m̄∂m̄Z (B.21)

is only generated by the higgs bilinear term in the Kahler potential [39]. To derive the

modular couplings to higgs doublets, one needs ∂siµ
′, which is:

∂siµ
′ = (∂sim3/2)Z +m3/2∂siZ − (∂si F̄

m̄)∂m̄Z − F̄ m̄∂si∂m̄Z (B.22)

One can see that the second and the third terms are of order m3/2 while the rest are

suppressed. Therefore, the dominant contribution is:

∂siµ
′ ≈ 1

2
m3/2(∂smZ)

(

−4

3
smNib1b2ν + 4δim

)

(B.23)

For simplicity, taking all the phases of the superpotential and that of Z to be vanishing,

we find:

−L ⊃ gXjHuHuXjH
∗
uHu (B.24)

gXjHuHu ≈ m2
3/2

[

Z2
eff∂sm logZ

(

−4

3
smNib1b2ν + 4δim

)

− Z2
eff∂si log K̃Hd

+∂si log K̃Hu

]

√

2s2i
3ai

Uij

=

√
14

3
m2

3/2Z
2
eff

(

− 4

3
ν2b1b2

(

N
∑

m=1

ζm

)

~XN · ~Xj + 4 ~X ′′′
N · ~Xj

−( ~X ′′
N )Hd · ~Xj

)

+

√
14

3
m2

3/2(
~X ′′
N )Hu · ~Xj (B.25)
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where ( ~X ′′′
N )i ≡ ζi

ai
(XN )i and ζi ≡ si∂si log(Z). We also use the fact that ∂φ0

Z = 0 and the

F -terms Fi/mp ≪ m3/2 for geometric moduli. To get the corresponding couplings for Hd,

we can simply replace Hu by Hd in the above equations. The coupling of moduli to higgs

through the kinetic term is similar to the non-higgs scalar

g′
α
XiHuHu

=

√
14

6
( ~X ′′

N )Hu · ~Xi (B.26)

Let us now consider the Bµ term, which is given by:

Bµ′ = (2m2
3/2 + V0)Z −m3/2F̄

m̄∂m̄Z +m3/2F
m[∂mZ − ∂m log(K̃HuK̃Hd

)Z]

−F̄ m̄Fn[∂m̄∂nZ − ∂n log(K̃HuK̃Hd
)∂m̄Z]. (B.27)

The corresponding derivative is given by:

∂siBµ
′ ≈ 1

2
m2

3/2 Z ∂si log(K̃HuK̃Hd
)

(

−4

3
siNkb1b2ν + 2δik

)

+ 2m2
3/2∂siZ, (B.28)

which gives rise to the coupling:

−L ⊃ gXjHdHuXjHdHu + c.c. (B.29)

gXjHdHu ≈
√

14

6
m2

3/2 Zeff

(

− 4

3
ν2b1b2

(

N
∑

m=1

ξHu
m

)

~XN · ~Xj

+2( ~X ′′
N )Hu · ~Xj + (Hu → Hd) + 4 ~X ′′′

N · ~Xj

)

(B.30)

Besides the term mentioned above there is another coupling from the bilinear term in the

kähler potential K ∼ Z(si)HdHu + h.c. [40]. This term leads to a coupling:

L ⊃ g′XjHdHu
∂µXj∂

µ(HdHu) + c.c. (B.31)

g′XjHdHu
=

√
14

6
Zeff

~X ′′′
N · ~Xj (B.32)

This coupling could be very important since it is proportional to the moduli mass squared

if equations of motion of Xi are used. Again for the coupling to be unsuppressed, the

bilinear coefficient Z should have a sizable dependence on the geometric moduli si, which

is natural. This coupling is essential for electroweak symmetry breaking in the G2-MSSM.

B.2 Meson couplings

In theG2-MSSM framework, the hidden sector is not sequestered from the visible sector and

there are couplings between the hidden sector meson field φ and various MSSM particles,

which we want to compute. First since the tree level gauge kinetic function does not depend

on φ, there is no coupling to gauge bosons. However there are couplings to the gauginos

which depend on ∂φ0
, which are computed to be

∂φ0
F i = −ie−iγ 4si

3φ0
Fm3/2, (B.33)

F =
2QPeff

21P
+ 2 +

3

P
+ O(P−1

eff ). (B.34)
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After normalization of fields, the coupling of meson to the gauginos is given by:

Lδφ0λλ = e−iγ
1

3
√

2φ0

Fm3/2δφ0λλ (B.35)

We now move on to the couplings of the meson field to scalars. We will assume that

the Kähler metric and the higgs bilinear Z do not depend on φ0. We then have for the

non-higgs scalars:

Lδφ0f̃ f̃
=

1√
2K̃α

∂m
′2
α

∂φ0
δφ0f̃

∗f̃

=
√

2m3/2 (∂φ0
m3/2)δφ0f̃

∗f̃

≈
√

2m2
3/2φ0

(

1 +
2

3φ2
0

)

δφ0f̃
∗f̃ (B.36)

In the above, we have neglected terms proportional to Fi/mp which are ≪ m3/2. There

are various kinds of couplings of the meson to the Higgs fields Hu and Hd. The coupling

originating from the term
∫

d4θ (ZHuHd + c.c) does not give rise to any contribution since

Z is assumed to be independent of φ0. The couplings Lδφ0H∗

uHu and Lδφ0H∗

dHd
are computed

as follows:

Lδφ0HuHu = gδφ0HuHuδφ0H̃
∗
uH̃u

gδφ0HuHu =
1√

2K̃Hu

∂(K̃−1
Hd

|µ′|2 +m
′2
Hu

)

∂φ0

≈
√

2(Z2
eff + 1)m2

3/2φ0

[

(

1 +
2

3φ2
0

)

+

(

Z2
eff

Z2
eff + 1

)

2F
3φ2

0

N
∑

i=1

ζi

]

(B.37)

Lδφ0Ĥ∗

d Ĥd
can be obtained from the above by replacing Hu with Hd. Again, we have

neglected terms proportional to Fi/mp. Finally, we look at the coupling Lδφ0HdHu . It is

given by:

Lδφ0HdHu = gδφ0HdHuδφ0H̃dH̃u

gδφ0HdHu =
1√

2(K̃HuK̃Hd
)1/2

∂(Bµ′)

∂φ0

≈
√

2m2
3/2 φ0Zeff

[

2

(

1 +
2

3φ2
0

)

+
F

3φ2
0

N
∑

i=1

(ξHu
i + ξHd

i )

]

(B.38)

The coupling Lδφ0H∗

uH
∗

d
can be computed by taking the complex conjugate of the above

expression.

B.3 RG evolution of the couplings

In the last subsection, we computed all the relevant couplings of the moduli and meson at

a high scale, presumably around the unification scale. However, since the scale at which

moduli decay is much smaller than the unification scale, one should in principle use the
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effective couplings at that scale to compute the decay widths. The RG running of the

moduli-scalar-scalar couplings are especailly important for the third generation squarks

and the higgs doublets and are the main focus of this subsection. The leading contribution

to the β functions are terms proportional to |yt|2 and g2
3 ,

10 which are given below:

β(gXjHdHu) ≈ 1

16π2
3|yt|2gXjHdHu ,

β(g′XjHdHu
) ≈ 1

16π2
3|yt|2g′XjHdHu

,

β(gXjHuHu) ≈ 1

16π2
6|yt|2

(

gXjHuHu +Xt

)

,

β(g′XjHuHu
) ≈ 1

16π2
6|yt|2g′XjHuHu

,

β(gXj Q̃3Q̃3
) ≈ 1

16π2

[

gXjQ̃3Q̃3

(

2|yt|2 −
16

3
g2
3

)

+ 2|yt|2Xt

]

,

β(g′
Xj Q̃3Q̃3

) ≈ 1

16π2
g′
XjQ̃3Q̃3

(

2|yt|2 −
16

3
g2
3

)

,

β(gXj ũ3ũ3
) ≈ 1

16π2

[

gXju3u3

(

8|yt|2 −
16

3
g2
3

)

+ 4|yt|2Xt

]

,

β(g′Xj ũ3ũ3
) ≈ 1

16π2
g′Xju3u3

(

8|yt|2 −
16

3
g2
3

)

, (B.39)

where Xt ≡ gXjHuHu + gXjQ̃3Q̃3
+ gXj ũ3ũ3

. For other beta functions not listed above, the

RGE effects can be neglected.

To examine the RG effects on the moduli-scalar-scalar couplings, we take all the

weighted dot products involved in the moduli-scalar-scalar couplings to be equal for sim-

plicity,11

~X ′′′
N · ~Xi = ( ~X ′′

N )α · ~Xi = Π. (B.40)

This is reasonable as their structure is very similar. So the high scale couplings can be

written as:

gXjHuHu = gXjHdHd
=

√
14

3
m2

3/2(3Z
2
eff + 1)Π (B.41)

g′XjHuHu
= g′XjHdHd

=

√
14

6
Π (B.42)

gXjHdHu =
4
√

14

3
m2

3/2ZeffΠ (B.43)

g′XjHdHu
=

√
14

6
ZeffΠ (B.44)

Using the beta functions given in eq. (B.39), we can see that at low scale gXjHuHu is

squashed because of the large yukawa couplings. Similarly gXjQ̃3Q̃3
and gXj ũ3ũ3

decrease

significantly and become negative at low scales.

10Here we have not included the digrams proportional to gXjgg and gXj g̃g̃, since their contributions are

relatively smaller
11The more general case will be studied later.
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One important thing to compute for moduli decay to light higgs is the effective coupling

geff
Xjhh

, which can be written in terms of the couplings to higgs doublets

geff
Xihh = (gXiHuHu − 2m2

hg
′
XiHuHu

) cos2 α+ (gXiHdHd
− 2m2

hg
′
XiHdHd

) sin2 α

−(gXiHdHu −m2
Xi
g′XiHdHu

) sin 2α (B.45)

where all the couplings involved should be evaluated at low scales and α is the higgs

mixing angle. For the G2-MSSM, the higgs sector is almost in the “decoupling region”,

which implies α ≈ β − π
2 . Now with universal boundary condition for the weighted dot

products for concreteness and simplicity, the effective coupling of moduli to hh final state

is given by:

geff
Xihh ≈

√
14

3
m2

3/2

[

(3Z2
eff + 1)(sin2 α+K1 cos2 α) − 2K2Zeff sin(2α)

]

Π (B.46)

whereK1 and K2 are the RG factors. To estimate these factors, we take yt = 1, α−1
unif = 26.7

and Zeff = 1.58, which is the same as the first Benchmark G2-MSSM. Then, typically we

find K1 ∼ 0.2 and K2 ∼ 0.5. For readers not familiar with the details of the G2-MSSM, it

is helpful to know that generically tan β ∼ 1 and Zeff ∼ 1.5. For the effective coupling to

third generation squarks, including the RG effects, we have:

geff
Xj ũ3ũ3

≈ geff
XjQ̃3Q̃3

∼
√

14

3
m2

3/2Π (B.47)

where geff
Xj f̃ f̃

≡ gXj f̃ f̃
−m2

f̃
g′
Xj f̃ f̃

. From the above RGE results, we find that the couplings

to the non-higgs scalars and higgs should be roughly of the same order because of the large

radiative correction even when some of them are suppressed relative to the other at the

high scale boundary. Therefore, if the couplings to scalars are large, then we should expect

a significant branching ratio of the moduli to LSPs.

For the coupling of the meson field to scalars, the β functions are exactly the same.

Similar to the analysis of light moduli, we introduce factors K1 and K2 to account for the

RG effects on gφHuHu and gφHdHu . Typically one has K1 ∼ 0.25 and K2 ∼ 0.5. From

eq. (B.37) and (B.36), we find the coupling gφHuHu is at least Z2
effF ∼ 30 times larger than

gφf̃ f̃ at the high scale. Because of this large coupling gφHuHu , even if the couplings gφQ̃3Q̃3

and gφũ3ũ3
are zero at the high scale, they can still be generated at the low scale, which is

proportional to gφHuHu by a factor K3 ∼ 0.1.

B.4 Decay rates of the moduli

Now that we have computed all the the relevant couplings for moduli decay, we can proceed

to compute the corresponding decay widths. In the following, we give the result of decay

widths for all the moduli, calculated from the two-body width formulae. There could be

contribution from three-body decays, which is generally small because of the phase space.

Although certain three-body decays, e.g. moduli to top quarks and higgs [40, 8] is relatively

large, it is still comparatively small in the current framework compared to the two-body

decay modes.
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For light moduli Xi, i = 1, . . . , (N − 1), the total decay width is

Γ(Xi) ≡
DXim

3
Xi

m2
p

=
7

72π

(

NGAXi
1 +NGAXi

2 + AXi
3 + AXi

4

) m3
Xi

m2
p

, (B.48)

where AXi
1 , AXi

2 , AXi
3 and AXi

4 are the corresponding coefficients for the decays to gauge

bosons gg, gauginos g̃g̃, non-higgs scalars f̃ f̃ and light higgs bosons hh respectively. They

are given by:

AXi
1 =

1

2

(

N
∑

i=1

N sm
i

Ni
ai

)−2

( ~X ′
N ·Xi)

2, (B.49)

AXi
2 =

(

m2
3/2

2m2
Xi

)(

N
∑

k=1

N sm
k

Nk
ak

)−2

( ~X ′
N ·Xi)

2, (B.50)

AXi
3 ≈

∑

α=t̃L,t̃R,b̃L

3

(

m4
3/2

m4
Xi

)(

1 − 4
m2
f̃α

m2
Xi

)1/2

Π2, (B.51)

AXi
4 ≈

(

m4
3/2

2m4
Xi

)

[

(3Z2
eff + 1)(sin2 α+K1 cos2 α) − 2K2Zeff sin(2α)

]2

Π2 (B.52)

Here, weighted dot products in the scalar couplings are assumed to be equal and are denoted

as Π as in the last subsection. In addition, the RGE effects on the couplings are included.

In the above result, the gaugino and gauge bosons are treated as massless. The two-body

decay to the standard model fermions is suppressed by (
mf

mXi
)2 ≪ 10−4, so it is neglected

in our result; even the top quark contribution is small. For the decay to non-higgs scalars,

naively there is a large kinematic suppression since these scalars have mass close to m3/2.

However, the RGE running significantly decreases the third generation squark mass at the

scale much lower than the unification scale. In G2 MSSM framework, the lightest stop is

t̃R which is about 4 times lighter than the gravitino. It, therefore, has a large contribution

to the partial width. In addition, Q̃3 (b̃L and t̃L) are also light enough such that they

contribute to the decay width.

The above result for A’s depend on the specific choices of the fundamental parameters,

such as ai,Ni andN sm
i , through several weighted dot products of vectors ~XN and ~Xi. These

quantities are different for different moduli. However from eq. (B.7) they are constrained

by:

N
∑

i=1

( ~X ′
N · ~Xi)

2 = | ~X ′
N |2 sin2 θ. (B.53)

Similar constraints apply for other products. From the above equation, one expects that

on average

( ~X ′
N · ~Xi)

2 ∼ 1

N − 1
| ~X ′

N |2 sin2 θ (B.54)

which is suppressed by 1/(N−1). It is obvious that this symmetric configuration is favored

in cosmology. If one wants the moduli to decay before BBN, then the most dangerous
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Figure 4: Left: distribution of the average of B−2( ~X ′

N · ~Xi)
2. Right: distribution of the average

of the weighted dot product ( ~X ′′′

N · ~Xi)
2.

modulus is the one with the smallest total decay width, which is bounded by the average

width. This gives rise to a strong constraint on the geometry of the G2 manifold, since the

width is suppressed by the number of moduli N . In the following discussion, we will focus

on this symmetric configuration.

In order to evaluate the decay width and the branching ratio, one needs to know

the typical values of these weighted dot products of ~XN and ~Xi. To do the estimation,

we generate a set of fundamental parameters ai, Ni, N
sm
i , ξi and ζi randomly with the

following conditions:

N
∑

i=1

ai =
7

3
, 1 < N sm

i < 2, 2 < Ni < 6, −1 < ξi < 0, −1 < ζi < 0. (B.55)

The above ranges are chosen based on constraints arising from the G2 framework and

our current understanding of the Kähler metric of visible matter fields in realistic con-

structions. We also impose the supergravity condition V7 > 1 and volume of three-cycle

V sm
Q ≈ 26. The ranges of Ni and N sm

i are chosen such that the efficiency of the parameter

generation is maximized when the above constraints are imposed. Due to our primitive

understanding about the kähler metric, the modular weights (corresponding to ξi and ζi)

are taken randomly in the allowed range. We plot the distribution for B−2( ~X ′
N · ~Xi)

2 and

( ~X ′′′
N · ~Xi)

2 in figure 4, where we can see the typical values are 2 × 10−4 and 20. This

result can be understood from the very rough estimate ( ~X ′
N · ~Xi) ∼ √

ai ∼ 1/
√
N and

( ~X ′′′
N · ~Xi) ∼ 1/

√
ai ∼

√
N . The distribution of (( ~X ′′

N )α · ~Xi)
2 is expected to be about the

same as ( ~X ′′′
N · ~Xi)

2, since they all have the same structure. However, one should be aware

that all the weighted dot products are independent and so are not necessarily equal.

Now let us estimate the decay width for the light moduli. Consider the first benchmark

model of G2-MSSM [39] for example, assuming the weighed dot products take their average

value, we find AXi
1 ≈ AXi

2 ∼ 10−4, AXi
3 ∼ 7.3 and AXi

4 ∼ 20.5. To summarize, the main

channels of interest for light moduli decays and their partial widths are Γ(gg) = Γ(g̃g̃) ≈
0.024 sec−1, Γ(t̃Rt̃R) ≈ 60 sec−1, Γ(t̃Lt̃L) = Γ(b̃Lb̃L) ≈ 43 sec−1 and Γ(hh) ≈ 412 sec−1.

The total width is the sum of these partial width. LSPs arise mainly from gauginos
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Figure 5: Left: distribution of DXi
. Right: distribution of moduli branching ratio to LSP.

(including LSPs), t̃t̃ and b̃b̃, so the LSP branching ratio is the sum of the gaugino and

squark channels divided by the total width. One can see that the decay to higgs and scalar

dominate the decay of the light moduli. The total decay width is about 558 sec−1 or the

corresponding DXi = 0.86. The branching ratio of the light moduli to LSP is about 26%.

These results should still be roughly correct for other benchmarks, differing at most by

O(1) since the dependence on the mass spectrum is mild as seen from the explicit result of

AXi
i . The main uncertainty arises from the deviation of those weighted dot products from

their typical values. To explore the more general case, one can relax the condition that all

the weighted dot products are equal. Instead we choose:

~X ′′′
N · ~Xi = ( ~X ′′

N )Hu · ~Xi = ( ~X ′′
N )Hd · ~Xi = Π1 (B.56)

( ~X ′′
N )Q̃3 · ~Xi = ( ~X ′′

N )ũ3 · ~Xi = Π2 (B.57)

Then we vary Π1 and Π2 according to the distributions of the weighted dot products in

figure 4. The distribution for DXi and the branching ratio to LSPs is shown in figure 5.

One can see that the branching ratio has a very small variation, but the distribution of

DXi has a long tail. In the paper, we will use 0.4 < DXi < 4 for concreteness, although

other values may be possible.

For the heavy modulus XN , the total decay width is

Γ(XN ) =
7

72π

(

NGAXN
1 +NGAXN

2 + AXN
4

) m3
XN

m2
p

, (B.58)

where AXN
i corresponds to the decay to gauge bosons gg, gauginos g̃g̃ and higgs bosons,

and are given by

AXN
1 =

9

98
(B.59)

AXN
2 =

2

9

(

m3/2

mXN

)2
(

ν2b1b2
)2

(B.60)

AXN
4 = Z2

eff

(

~X ′′′
N · ~Xi

)2
. (B.61)
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In the above result, we have not included the contributions from the decay to non-higgs

scalars and fermions since they are suppressed by (m3/2/mXN
)4 and (mf/mXN

)2 given the

large mass of the heavy modulus mXN
∼ 600 ×m3/2. Taking benchmark 1 of G2-MSSM

in [39] and typical values for weighted dot products, we get AXN
1 ≈ 0.1, AXN

2 ≈ 0.01 and

AXN
4 ≈ 50. The total width is about 3 × 1010 sec−1 or the corresponding DXN

≈ 1.6. The

branching ratio to LSPs is about 3 × 10−3.

The decays of moduli to gravitinos is also very important. The decay of a modulus to

gravitinos can be calculated using the following formula: [19]

Γ(X → 2ψ3/2) ≃
|G(eff)
X |2
288π

m5
X

m2
3/2m

2
p

(B.62)

where G(eff)
X is the effective coupling of the modulus field to gravitinos which includes effects

of moduli mixing. For the heavy modulus, the coupling arises from the mixing with meson

field, since the goldstino is mainly the fermionic partner of the meson. Since the heavy

modulus is much heavier than the meson a rough estimate12 gives G(eff)
X ∼ m3/2/mXN

.

Therefore, for the heavy modulus, the decay rate to gravitino is

Γ(XN → 2ψ3/2) ∼
1

288π

m3
XN

m2
p

(B.63)

This corresponds to BXN

3/2 ∼ 7 × 10−4. In addition, since the heavy modulus decays much

earlier than other moduli, the gravitino produced will be diluted by the subsequent moduli

decays. So this estimate is enough for our discussion of gravitino problem. For both the

light moduli and the meson fields, the decay to gravitino is kinematically suppressed since

mXi ,mφ0
≈ 2m3/2.

B.5 Decay width of the meson

The total decay width of meson modulus is:

Γ(δφ0) ≡
Dφm

3
φ

m2
p

=
1

72π

(

NGAφ0

1 + Aφ0

2 + Aφ0

3

) m3
φ

m2
p

, (B.64)

where Aφ
i corresponds to the decay to gauginos g̃g̃, non-higgs scalar f̃ f̃ and light higgs

bosons hh, and are given by:

Aφ0

1 =
1

2φ2
0

F2

(

m3/2

mφ

)2

, (B.65)

Aφ0

2 =
∑

α

27φ2
0K

2
3Z

4
eff

(

(1 + Z−2
eff )

(

1 +
2

3φ2
0

)

+
2F
3φ2

0

N
∑

i=1

ζi

)2

×
(

m4
3/2

m4
φ

)(

1 − 4
m2
f̃α

m2
φ

)1/2

, (B.66)

12There could be an additional suppression in special cases as discussed in [12, 7]. We thank Fuminobu

Takahashi for discussions regarding this point.

– 43 –



J
H
E
P
0
6
(
2
0
0
8
)
0
6
4

Aφ0

3 =
9

2
φ2

0

(

m4
3/2

m4
φ0

)

[

Z2
eff

(

(1 + Z−2
eff )

(

1 +
2

3φ2
0

)

+
2F
3φ2

0

N
∑

i=1

ζi

)

(sin2 α+K1 cos2 α)

−K2Zeff

(

2

(

1 +
2

3φ2
0

)

+
F

3φ2
0

N
∑

i=1

(ξHu
i + ξHd

i )

)

sin 2α

]2

. (B.67)

Here, as discussed in the last subsection, the low scale couplings to third-generation squarks

are dominantly generated from RG running and are related to the coupling gφHuHu by a

factor K3 ∼ 0.1. For the first benchmark of G2-MSSM in [39] and taking the simplest

assumption ξi = ζi = −1/2, we get Aφ0

1 ≈ 13.7, Aφ0

2 ≈ 2.9 × 104 and Aφ0

3 ≈ 1.3 × 105.

One can see that this result is enhanced from the naive estimate by the total number of

moduli ∼ N and large (hidden-sector) three-cycle volume ν. The total decay width is

about 4.6 × 105 sec−1, corresponding to Dφ = 711. The branching ratio to LSPs is about

18%. Again, this can change by O(1) for other benchmarks.

References

[1] G.D. Coughlan, W. Fischler, E.W. Kolb, S. Raby and G.G. Ross, Cosmological problems for

the Polonyi potential, Phys. Lett. B 131 (1983) 59.

[2] J.R. Ellis, D.V. Nanopoulos and M. Quirós, On the axion, dilaton, Polonyi, gravitino and

shadow matter problems in supergravity and superstring models, Phys. Lett. B 174 (1986)

176.

[3] B. de Carlos, J.A. Casas, F. Quevedo and E. Roulet, Model independent properties and

cosmological implications of the dilaton and moduli sectors of 4D strings, Phys. Lett. B 318

(1993) 447 [hep-ph/9308325].

[4] T. Banks, D.B. Kaplan and A.E. Nelson, Cosmological implications of dynamical

supersymmetry breaking, Phys. Rev. D 49 (1994) 779 [hep-ph/9308292].

[5] S. Nakamura and M. Yamaguchi, A note on Polonyi problem, Phys. Lett. B 655 (2007) 167

[arXiv:0707.4538].

[6] M.Y. Khlopov and A.D. Linde, Is it easy to save the gravitino?, Phys. Lett. B 138 (1984)

265.

[7] M. Dine, R. Kitano, A. Morisse and Y. Shirman, Moduli decays and gravitinos, Phys. Rev. D

73 (2006) 123518 [hep-ph/0604140].

[8] M. Endo, M. Kawasaki, F. Takahashi and T.T. Yanagida, Inflaton decay through supergravity

effects, Phys. Lett. B 642 (2006) 518 [hep-ph/0607170].

[9] V.S. Rychkov and A. Strumia, Thermal production of gravitinos, Phys. Rev. D 75 (2007)

075011 [hep-ph/0701104].

[10] M. Endo, K. Hamaguchi and F. Takahashi, Moduli-induced gravitino problem, Phys. Rev.

Lett. 96 (2006) 211301 [hep-ph/0602061].

[11] S. Nakamura and M. Yamaguchi, Gravitino production from heavy moduli decay and

cosmological moduli problem revived, Phys. Lett. B 638 (2006) 389 [hep-ph/0602081].

[12] M. Endo, K. Hamaguchi and F. Takahashi, Moduli/inflaton mixing with supersymmetry

breaking field, Phys. Rev. D 74 (2006) 023531 [hep-ph/0605091].

– 44 –

http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB131%2C59
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB174%2C176
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB174%2C176
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB318%2C447
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB318%2C447
http://arxiv.org/abs/hep-ph/9308325
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD49%2C779
http://arxiv.org/abs/hep-ph/9308292
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB655%2C167
http://arxiv.org/abs/0707.4538
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB138%2C265
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB138%2C265
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD73%2C123518
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD73%2C123518
http://arxiv.org/abs/hep-ph/0604140
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB642%2C518
http://arxiv.org/abs/hep-ph/0607170
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD75%2C075011
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD75%2C075011
http://arxiv.org/abs/hep-ph/0701104
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C96%2C211301
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C96%2C211301
http://arxiv.org/abs/hep-ph/0602061
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB638%2C389
http://arxiv.org/abs/hep-ph/0602081
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD74%2C023531
http://arxiv.org/abs/hep-ph/0605091


J
H
E
P
0
6
(
2
0
0
8
)
0
6
4

[13] M. Endo, F. Takahashi and T.T. Yanagida, Anomaly-induced inflaton decay and

gravitino-overproduction problem, Phys. Lett. B 658 (2008) 236 [hep-ph/0701042].

[14] M. Endo, F. Takahashi and T.T. Yanagida, Inflaton decay in supergravity, Phys. Rev. D 76

(2007) 083509 [arXiv:0706.0986].

[15] K. Ichikawa, M. Kawasaki and F. Takahashi, The oscillation effects on thermalization of the

neutrinos in the universe with low reheating temperature, Phys. Rev. D 72 (2005) 043522

[astro-ph/0505395].

[16] S. Nakamura and M. Yamaguchi, Gravitino production from heavy moduli decay and

cosmological moduli problem revived, Phys. Lett. B 638 (2006) 389 [hep-ph/0602081].

[17] T. Asaka, S. Nakamura and M. Yamaguchi, Gravitinos from heavy scalar decay, Phys. Rev. D

74 (2006) 023520 [hep-ph/0604132].

[18] M. Endo, K. Hamaguchi and F. Takahashi, Moduli-induced gravitino problem, Phys. Rev.

Lett. 96 (2006) 211301 [hep-ph/0602061].

[19] M. Kawasaki, F. Takahashi and T.T. Yanagida, The gravitino overproduction problem in

inflationary universe, Phys. Rev. D 74 (2006) 043519 [hep-ph/0605297].

[20] M. Nagai and K. Nakayama, Nonthermal dark matter in mirage mediation, Phys. Rev. D 76

(2007) 123501 [arXiv:0709.3918].

[21] M. Endo and F. Takahashi, Non-thermal production of dark matter from late-decaying scalar

field at intermediate scale, Phys. Rev. D 74 (2006) 063502 [hep-ph/0606075].

[22] M. Kawasaki and K. Nakayama, Baryon asymmetry in heavy moduli scenario, Phys. Rev. D

76 (2007) 043502 [arXiv:0705.0079].

[23] S. Kachru, R. Kallosh, A. Linde and S.P. Trivedi, De Sitter vacua in string theory, Phys.

Rev. D 68 (2003) 046005 [hep-th/0301240].

[24] V. Balasubramanian, P. Berglund, J.P. Conlon and F. Quevedo, Systematics of moduli

stabilisation in Calabi-Yau flux compactifications, JHEP 03 (2005) 007 [hep-th/0502058].

[25] J.P. Conlon, F. Quevedo and K. Suruliz, Large-volume flux compactifications: moduli

spectrum and D3/D7 soft supersymmetry breaking, JHEP 08 (2005) 007 [hep-th/0505076].

[26] M.R. Douglas and S. Kachru, Flux compactification, Rev. Mod. Phys. 79 (2007) 733

[hep-th/0610102].

[27] M.P. Hertzberg, M. Tegmark, S. Kachru, J. Shelton and O. Ozcan, Searching for inflation in

simple string theory models: an astrophysical perspective, Phys. Rev. D 76 (2007) 103521

[arXiv:0709.0002].

[28] L. McAllister and E. Silverstein, String cosmology: a review, Gen. Rel. Grav. 40 (2008) 565

[arXiv:0710.2951].

[29] J.P. Conlon and F. Quevedo, Astrophysical and cosmological implications of large volume

string compactifications, JCAP 08 (2007) 019 [arXiv:0705.3460].

[30] B.S. Acharya, A moduli fixing mechanism in M-theory, hep-th/0212294.

[31] C. Beasley and E. Witten, A note on fluxes and superpotentials in M-theory compactifications

on manifolds of G2 holonomy, JHEP 07 (2002) 046 [hep-th/0203061].

– 45 –

http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB658%2C236
http://arxiv.org/abs/hep-ph/0701042
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD76%2C083509
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD76%2C083509
http://arxiv.org/abs/0706.0986
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD72%2C043522
http://arxiv.org/abs/astro-ph/0505395
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB638%2C389
http://arxiv.org/abs/hep-ph/0602081
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD74%2C023520
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD74%2C023520
http://arxiv.org/abs/hep-ph/0604132
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C96%2C211301
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C96%2C211301
http://arxiv.org/abs/hep-ph/0602061
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD74%2C043519
http://arxiv.org/abs/hep-ph/0605297
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD76%2C123501
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD76%2C123501
http://arxiv.org/abs/0709.3918
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD74%2C063502
http://arxiv.org/abs/hep-ph/0606075
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD76%2C043502
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD76%2C043502
http://arxiv.org/abs/0705.0079
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD68%2C046005
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD68%2C046005
http://arxiv.org/abs/hep-th/0301240
http://jhep.sissa.it/stdsearch?paper=03%282005%29007
http://arxiv.org/abs/hep-th/0502058
http://jhep.sissa.it/stdsearch?paper=08%282005%29007
http://arxiv.org/abs/hep-th/0505076
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=RMPHA%2C79%2C733
http://arxiv.org/abs/hep-th/0610102
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD76%2C103521
http://arxiv.org/abs/0709.0002
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=GRGVA%2C40%2C565
http://arxiv.org/abs/0710.2951
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=JCAPA%2C0708%2C019
http://arxiv.org/abs/0705.3460
http://arxiv.org/abs/hep-th/0212294
http://jhep.sissa.it/stdsearch?paper=07%282002%29046
http://arxiv.org/abs/hep-th/0203061


J
H
E
P
0
6
(
2
0
0
8
)
0
6
4

[32] B. Acharya and E. Witten, Chiral fermions from manifolds of G2 holonomy,

hep-th/0109152.

[33] E. Witten, Anomaly cancellation on G2 manifolds, hep-th/0108165.

[34] M. Atiyah and E. Witten, M-theory dynamics on a manifold of G2 holonomy, Adv. Theor.

Math. Phys. 6 (2003) 1 [hep-th/0107177].

[35] E. Witten, Deconstruction, G2 holonomy and doublet-triplet splitting, hep-ph/0201018.

[36] T. Friedmann and E. Witten, Unification scale, proton decay and manifolds of G2 holonomy,

Adv. Theor. Math. Phys. 7 (2003) 577 [hep-th/0211269].

[37] B. Acharya, K. Bobkov, G. Kane, P. Kumar and D. Vaman, An M-theory solution to the

hierarchy problem, Phys. Rev. Lett. 97 (2006) 191601 [hep-th/0606262].

[38] B.S. Acharya, K. Bobkov, G.L. Kane, P. Kumar and J. Shao, Explaining the electroweak scale

and stabilizing moduli in M-theory, Phys. Rev. D 76 (2007) 126010 [hep-th/0701034].

[39] B.S. Acharya, K. Bobkov, G.L. Kane, J. Shao and P. Kumar, The G2-MSSM — An M

theory motivated model of particle physics, arXiv:0801.0478.

[40] T. Moroi and L. Randall, Wino cold dark matter from anomaly-mediated SUSY breaking,

Nucl. Phys. B 570 (2000) 455 [hep-ph/9906527].

[41] M. Dine, L. Randall and S.D. Thomas, Baryogenesis from flat directions of the

supersymmetric standard model, Nucl. Phys. B 458 (1996) 291 [hep-ph/9507453].

[42] N. Kaloper and K.A. Olive, Dilatons in string cosmology, Astropart. Phys. 1 (1993) 185.

[43] R. Brustein, S.P. de Alwis and P. Martens, Cosmological stabilization of moduli with steep

potentials, Phys. Rev. D 70 (2004) 126012 [hep-th/0408160].

[44] R. Brustein and R. Madden, Classical corrections in string cosmology, JHEP 07 (1999) 006

[hep-th/9901044].

[45] G. Huey, P.J. Steinhardt, B.A. Ovrut and D. Waldram, A cosmological mechanism for

stabilizing moduli, Phys. Lett. B 476 (2000) 379 [hep-th/0001112].

[46] N. Kaloper, J. Rahmfeld and L. Sorbo, Moduli entrapment with primordial black holes, Phys.

Lett. B 606 (2005) 234 [hep-th/0409226].

[47] T. Battefeld and S. Watson, String gas cosmology, Rev. Mod. Phys. 78 (2006) 435

[hep-th/0510022].

[48] S. Cremonini and S. Watson, Dilaton dynamics from production of tensionless membranes,

Phys. Rev. D 73 (2006) 086007 [hep-th/0601082].

[49] L. Kofman et al., Beauty is attractive: moduli trapping at enhanced symmetry points, JHEP

05 (2004) 030 [hep-th/0403001].

[50] S. Watson, Moduli stabilization with the string Higgs effect, Phys. Rev. D 70 (2004) 066005

[hep-th/0404177].

[51] B. Greene, S. Judes, J. Levin, S. Watson and A. Weltman, Cosmological moduli dynamics,

JHEP 07 (2007) 060 [hep-th/0702220].

[52] M. Dine, Y. Nir and Y. Shadmi, Enhanced symmetries and the ground state of string theory,

Phys. Lett. B 438 (1998) 61 [hep-th/9806124].

– 46 –

http://arxiv.org/abs/hep-th/0109152
http://arxiv.org/abs/hep-th/0108165
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=00203%2C6%2C1
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=00203%2C6%2C1
http://arxiv.org/abs/hep-th/0107177
http://arxiv.org/abs/hep-ph/0201018
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=00203%2C7%2C577
http://arxiv.org/abs/hep-th/0211269
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C97%2C191601
http://arxiv.org/abs/hep-th/0606262
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD76%2C126010
http://arxiv.org/abs/hep-th/0701034
http://arxiv.org/abs/0801.0478
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB570%2C455
http://arxiv.org/abs/hep-ph/9906527
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB458%2C291
http://arxiv.org/abs/hep-ph/9507453
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=APHYE%2C1%2C185
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD70%2C126012
http://arxiv.org/abs/hep-th/0408160
http://jhep.sissa.it/stdsearch?paper=07%281999%29006
http://arxiv.org/abs/hep-th/9901044
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB476%2C379
http://arxiv.org/abs/hep-th/0001112
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB606%2C234
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB606%2C234
http://arxiv.org/abs/hep-th/0409226
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=RMPHA%2C78%2C435
http://arxiv.org/abs/hep-th/0510022
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD73%2C086007
http://arxiv.org/abs/hep-th/0601082
http://jhep.sissa.it/stdsearch?paper=05%282004%29030
http://jhep.sissa.it/stdsearch?paper=05%282004%29030
http://arxiv.org/abs/hep-th/0403001
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD70%2C066005
http://arxiv.org/abs/hep-th/0404177
http://jhep.sissa.it/stdsearch?paper=07%282007%29060
http://arxiv.org/abs/hep-th/0702220
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB438%2C61
http://arxiv.org/abs/hep-th/9806124


J
H
E
P
0
6
(
2
0
0
8
)
0
6
4

[53] C. Vafa, The string landscape and the swampland, hep-th/0509212.

[54] R. Brustein and P.J. Steinhardt, Challenges for superstring cosmology, Phys. Lett. B 302

(1993) 196 [hep-th/9212049].

[55] M. Dine and N. Seiberg, Is the superstring weakly coupled?, Phys. Lett. B 162 (1985) 299.

[56] E.W. Kolb and M.S. Turner, The early universe, Front. Phys. 69 (1990) 1.

[57] M. Kawasaki, K. Kohri and N. Sugiyama, Cosmological constraints on late-time entropy

production, Phys. Rev. Lett. 82 (1999) 4168 [astro-ph/9811437].

[58] G.F. Giudice, E.W. Kolb and A. Riotto, Largest temperature of the radiation era and its

cosmological implications, Phys. Rev. D 64 (2001) 023508 [hep-ph/0005123].

[59] M. Kawasaki, K. Kohri and N. Sugiyama, MeV-scale reheating temperature and

thermalization of neutrino background, Phys. Rev. D 62 (2000) 023506 [astro-ph/0002127].

[60] S. Hannestad, What is the lowest possible reheating temperature?, Phys. Rev. D 70 (2004)

043506 [astro-ph/0403291].

[61] WMAP collaboration, E. Komatsu et al., Five-year Wilkinson Microwave Anisotropy Probe

(WMAP) observations: cosmological interpretation, arXiv:0803.0547.

[62] I. Affleck and M. Dine, A new mechanism for baryogenesis, Nucl. Phys. B 249 (1985) 361.

[63] J. Simon, R. Jimenez, L. Verde, P. Berglund and V. Balasubramanian, Using cosmology to

constrain the topology of hidden dimensions, astro-ph/0605371.

[64] V. Balasubramanian, P. Berglund, R. Jimenez, J. Simon and L. Verde, Topology from

cosmology, arXiv:0712.1815.

[65] N. Arkani-Hamed, G.L. Kane, J. Thaler and L.-T. Wang, Supersymmetry and the LHC

inverse problem, JHEP 08 (2006) 070 [hep-ph/0512190].

– 47 –

http://arxiv.org/abs/hep-th/0509212
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB302%2C196
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB302%2C196
http://arxiv.org/abs/hep-th/9212049
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB162%2C299
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=FRPHA%2C69%2C1
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C82%2C4168
http://arxiv.org/abs/astro-ph/9811437
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD64%2C023508
http://arxiv.org/abs/hep-ph/0005123
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD62%2C023506
http://arxiv.org/abs/astro-ph/0002127
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD70%2C043506
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD70%2C043506
http://arxiv.org/abs/astro-ph/0403291
http://arxiv.org/abs/0803.0547
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB249%2C361
http://arxiv.org/abs/astro-ph/0605371
http://arxiv.org/abs/0712.1815
http://jhep.sissa.it/stdsearch?paper=08%282006%29070
http://arxiv.org/abs/hep-ph/0512190

